Defining the search space for query optimization in a

heterogeneous database management system *
Daniela Florescu™, Louiqa Raschidf, Patrick Valduriez**

T .
“*INRIA Rocquencourt, Projet RODIN College of Business and Management and

Institute for Advanced Computer Studies
BP 105ﬁ£§iii¢£3a€$§2¢?&@?mﬁ%2§rance University of Maryland, College Park, MD 20742

louiga@umiacs.umd.edu

November 9, 1994

Abstract:

We consider a heterogeneous database system (HDBMS) with a global object schema,
and remote target databases that may be relational or object-oriented. The problem
s to transform an initial query, posed against the global object schema in an ob-
ject query language, into simplified queries that can be efficiently processed against
some remote target databases. In the HDBMS, query optimization is made difficult
by schematic discrepancy, and the need to model mapping information between the
global and target schema(s). In this paper, we address this problem by representing
the mappings from a target schema to the global schema, as a set of heterogeneous
object equivalences, in an algebraic language. These equivalences are the basis for
defining the heterogeneous search space of an HDBMYS optimizer. We extend a
modular rule-based query optimizer to produce simplified optimized queries for the
HDBMS. The main result, reported in this paper, is the ability of the optimizer to
uniformly perform syntactic simplifications, logical and semantic equivalence trans-

formations, as well as heterogeneous equivalence transformations.

*This research has been partially supported by the Advanced Research Project Agency under grant
ARPA/ONR 92-J1929 and by the Commission of European Communities under Esprit project IDEA.

www.manaraa.com

1 Introduction

Research in heterogeneous database systems (HDBMS) has focused on resolving dissimilarities due
to mismatch in data models, schema and query languages. Queries are executed against some target
databases, so that information from these databases is accessible to other applications. In order
to successfully support seamless integration of data from multiple sources, these systems must also
provide heterogeneous query optimization, so queries can be processed efficiently. In this paper, we
describe our research on extending a modular rule-based query optimizer [Florescu and Valduriez
(1994)], to produce optimized queries in a heterogeneous environment.

We define heterogeneous query optimization for the purposes of this paper, as follows: Assume a
global (object) schema in which a query is being posed in an object query language. For this paper,
we use the Flora object model and Flora query language [Novak et al (1994)], developed at INRIA,
as our global data model and query language. The queries are to be processed against some remote
target databases, which could be represented by relational or object schemas. We assume there is
knowledge of the mappings needed to import data from these remote databases. The objective of
heterogeneous query optimization is to start with an initial query, say a Flora query, and perform
possible simplifications and equivalent transformations to first produce (multiple) query (queries)
in the Flora query language, which refer(s) to the remote schema entities. We could subsequently
transform these queries and generate a query in the remote query language, or generate multiple
sub-queries, if the information spans more than one remote database. We note that although we
assume a global schema architecture for HDBMS, in this paper, we can apply our results to define
a heterogeneous search space for a different architecture, e.g., federated HDBMS [Sheth and Larson
(1990)], or canonical HDBMS [Qian and Raschid (1995)].

The role of an optimizer is to determine an execution plan that minimizes an objective cost

function. The problem can be described abstractly as follows [Du92]: Given a query Q, an execution
space E that computes Q, and a cost function ¢ defined over E, find an execution e in Eqg (the
subset of E that computes Q) of minimum cost: [min cep, c (e)].
An optimizer can be described along the following three dimensions: an execution space which
captures the underlying execution model and defines, in an abstract way, the alternative executions;
a cost model which predicts the cost of an execution; and a search strategy which is used to enumerate
the executions and select the best one. The input query is often in an algebraic form, and execution
plans are represented by algebraic operator trees. The execution space for a given query is obtained
by rewriting algebraic expressions using equivalence rules. In this paper, we focus on the first task
of defining the heterogeneous search space, in terms of an algebraic representation.

There have been several proposals for transforming queries in heterogeneous environments.
Some of them are based on higher-order query languages, higher-order logics, or meta-models
[Barsalou and Gangopadhyay (1992), Krishnamurthy et al (1991), Lakshmanan (1993)], and are not
well supported under current DBMS technology. There have been a few systems that have studied
query processing and/or have been implemented, e.g., Multibase [Dayal and Hwang (1984)], Pegasus
[Ahmed et al (1991), Albert et o/ (1993)], UniSQL/M [Kim et al (1993), Kim and Seo (1992)],

www.manaraa.com

SIMS [Arens and Knoblock (1992), Arens et al (1993)]. Alternative approaches either specify a
canonical mediator knowledge base which has mapping knowledge among different schema [Chang
et al (1994), Qian (1993), Qian and Raschid (1995), Raschid et al (1993), Raschid and Chang
(1994)], or advocate the federated approach, as summarized in [Sheth and Larson (1990)]. There
has also been research on constructing a calibrating database, to develop cost-models which capture
the various parameters corresponding to HDBMS [Du et al (1992)]. This study assumes that the
first step of resolving discrepancies among the schema has already been solved.

The most popular approach is to build a single unified global schema, to resolve all the schematic
discrepancies and representational mismatch (due to different data models), of the heterogeneous
environment. Each of the remote schemas are integrated within the global schema, and each of
the remote databases is assumed to be a model for the global schema. The mapping from each
remote schema to the global schema is often expressed in some high-level extended SQL-like data
definition /manipulation language. For example, HOSQL in the case of Pegasus and SQL/M in the
case of UniSQL/M.

There has been some research in query optimization and query decomposition in heterogeneous
environments in the Pegasus, SIMS and UniSQL/M projects. For example, the Pegasus project
[Ahmed et al (1991), Albert et al (1993)], studies both query reformulation as well as query opti-
mization. During query processing, the HOSQL query is represented as an E-tree (of sub-queries
and operations), in some extended relational algebra. If there are multiple external sources for
the data (EDRM), then appropriate translations are performed. The query in the native query
language is represented in some canonical form, and then decomposed into parametric sub-queries,
each evaluated in a separate EDRM. Some simplification of the queries is also possible, e.g. elim-
ination of the expensive outer-join operation. They also consider some cost-based and heuristic
optimization. However, these strategies are applied ad-hoc, and they do not define a heterogeneous
search space.

The SIMS project [Arens and Knoblock (1992), Arens et al (1993)], also addresses the issue of
query processing and optimization. However, they use the LOOM knowledge representation system
to build a global schema, and as their query language. All optimization is done within the LOOM
reasoning module, and not in an algebraic representation. Thus, it is difficult to determine if they
systematically search the space of equivalent queries. A declarative specification of mappings among
multidatabase systems is presented in [Chomicki and Litwin (1994)], but they do not address the
issue of generating equivalent queries using this knowledge.

To summarize, previous research does not systematically define a search space for heterogeneous
query optimization. A systematic definition of this space is the only way to exploit effective query
optimization techniques (together with a cost model and search strategy), for HDBMS. This will
become more important, as HDBMS scale up to large numbers of remote databases.

Our approach to heterogeneous query optimization is influenced by the modular rule-based
Flora object query optimizer [Florescu and Valduriez (1994]. We define a heterogeneous search
spaceglorggeneratinggequivalent queries, in which we uniformly apply transformations based on

syntactic simplification, logical and semantic equivalences, and most importantly, we incorporate

www.manaraa.com

heterogeneous equivalences among entities in multiple heterogeneous schema. We specify “hetero-
geneous object equivalences” to map from the entities of a remote target schema to the unified
global schema, using a second-order algebraic language [Florescu and Valduriez (1994), Guting
(1993)]. The heterogeneous search space is then defined using heterogeneous object equivalences,
and logical and semantic equivalences in both the global and target schema(s).

Our approach to specifying heterogeneous equivalences is similar to the concept of virtual classes,
proposed in [Abiteboul and Bonner (1991)]. A virtual class is populated by “copying” objects
already existing in other classes, or by “creating” entirely new objects. When a class is populated
by already existing objects of another class, they offer the possibility of both importing the class
(definition), and hiding portions of it; this is similar to a view. However, they do not consider
objects in a virtual class referencing objects in some other class, possibly in a recursive fashion.
This is an important extension that we have considered in our research.

Through a suite of examples, we explore the heterogeneous search space for query optimiza-
tion. We summarize the examples as follows: The optimizer obtains a simplified query wrt the
remote schema, through the uniform application of heterogeneous equivalences, together with syn-
tactic simplification (such as un-nesting), logical simplification (based on algebraic properties of
built-in operators in the algebra, e.g., membership test), and semantic equivalences (based on do-
main knowledge specified as integrity constraints). Even with redundancy of heterogeneous object
equivalences, the optimizer correctly produces a simplified query. However, the optimizer can also
use alternative heterogeneous and semantic equivalences to produce several candidate equivalent
queries, from which the optimal query must be chosen. When remote schema entities are located
in multiple remote databases, the optimizer can produce equivalent queries, as well as sub-queries.

This paper is organized as follows: In Section 2, we give an overview of the Flora object model
and Flora query language, and the modular rule-based query optimizer architecture. In Section 3,
we define “heterogeneous object equivalences”, and give examples. We also define the heterogeneous
search space for the HDBMS. In section 4, we use a suite of example schemas and queries, to
illustrate the simplification process, and to describe alternate queries in the heterogeneous search

space. Finally, in Section 5, we summarize our results, and discuss future research.

2 The Flora query optimizer

Flora is a simple algebraic language [Novak et al (1994)], for an object data model, with collection-
oriented computational capabilities. The Flora query optimizer uniformly captures logical, seman-
tic, and implementation knowledge (physical information, statistics, etc.), within the framework of
a many-sorted algebra, and uses this knowledge to find an efficient execution plan, from among a set
of alternative plans. The optimizer is modular and rule-based, and strives to balance extensibility

with efficiency.

www.manaraa.com

2.1 The Flora Algebra

The framework is based on a many-sorted algebra, which, unlike the relational algebra, supports
arbitrary types, and operations between arbitrary types. A formal description of the algebraic
representation is in [Florescu and Valduriez (1994), Guting (1993)].

Flora type expressions are constructed from the basic types (atomic built-in types, external
types, and user-defined object types), through the recursive application of the following type con-
structors: set, list and tuple.

The set of corresponding Flora operators include built-in and user-defined operators. The
built-in operators include comparisons, logic and arithmetic operators, aggregation operators, the
set membership operator, etc. A definition of built-in Flora types and operators is in appendix A.

The part of the algebra specific to an application domain is described by an object signature
(0,30,<,T), where O is a set of object type names, > is a set of user-defined operators (with
their signatures), < is a partial order on O (corresponding to the inheritance relationship), and I is
a function that associates every object o € O with a Flora type expression, (corresponding to the

state of the object type o).
Example 2.1

Consider the following object signature: O={Person, City, Country}, > »,={}, < ={} and
I(Country)=[name: string, cities: {City}, capital: City]

I(City)=[name: string, residents: {Person}, country: Country]

I(Person)=[name: string, country: Country, city: City, income: int, child: {Person}].

NV is aset of particular named variables, each associated with a Flora type. For every object type
o € O, there exists an implicit named variable ext(o) of type {0} corresponding to the extension of
this object type. The value of the variable ext(o) is the set of object identifiers of all the persistent

instances of type o, (including instances of all sub-types of type o).
Example 2.2

NV ={ ext(Country) of type { Country}, ext(City) of type { City}, ext(Person) of type {Person},
RICH of type int }.

A Flora term is an arbitrary combination of user-defined and built-in functions, starting with
constants and variables. X is a set of variables, each associated with a type, and T'(X) is the set of
well-typed terms. A formal definition of Flora well-typed expressions is in appendix B.

The most important Flora built-in operator is Select. It provides a simple but expressive way
of constructing Flora queries, and it is a good candidate for optimization. Select generalizes the

classic select-project-join relational operators. It has three arguments, corresponding to the SQL

clauses, SELECT, FROM and WHERE.

Definition 2.1 Select:
Let Cq € T(X) be of type {s1}, C> € T(X U{z1}) be of type {s2}, ---, C, € T(X UH{z1, -+, 20-1})

www.manaraa.com

be of type {s,}, prede T(X U{x1,---,2n}) be of type bool, and proje T(X J{z1, -, z.}) be of type
s. Assume that {xy,---,2,} and X are disjoint. Then,

Select (proj, z1 in Cy and x2 in Cy -+ x, in C,, pred)

is in T'(X), and it is of type {s} (n>1).

Queries can be expressed wrt any set-oriented expression, including the extensions of the classes.
A range variable x; is associated with every collection C;, x; is of type s; and C; is of type {s;}.
(See [Florescu and Valduriez (1994)] for details.) The expressions for each C;, pred and proj are
Flora terms, which satisfy the type constraints. Flora allows nesting and user-defined functions in

all clauses of the Select, as illustrated in the following simple examples:
Example 2.3

Flora queries

a) Select the names of rich people who are childless.

select(x.name, x in ext(Person),

x.income>RICH and is_empty(x.child))
b) Select the names of people who have at least one child residing in Paris.

select(x.name, x in ext(Person),

exists y in x.child (y.city=Paris));

Object query languages may support the creation of new objects [see Bancilhon et al (1989)].
For our research, this feature is crucial, since new objects are created in the heterogeneous envi-

ronment, when a query is executed in a remote database.

Definition 2.2 Object construction:
Let o € O be an object type name and t € T(X) be of type I(0). Then, NewObject o(t) € T(X),
and it is of type o.

Example 2.4

Let 21, 22, i3 and 74 be object identifiers corresponding to an instance of type Country, an instance
of type City, and two instances of type Person, respectively. Then,
NewObject Person ([name:="Paul', country:=¢;, city:=iy, income:=20000, child:=q{i3,i4}])

creates a new object Paul of type Person.

www.manaraa.com

2.2 The search space for a Flora query

We define a query plan to be a term of an object signature, over the set of named variables. The
task of an optimizer is to find an efficient query plan, equivalent to an input query plan. We say
that two terms ¢; and ¢; of an object signature are equivalent, (noted as t; = t3), if they evaluate to
the same value, for each instantiation of the named variables. Given an input term, ¢, over named
variables NV, representing an input query plan, we define Fquiv(t) ={t' |t € T(NV)and t' = t},
to be the search space for the Flora query ¢, that is being explored by the optimizer.

Defining the equivalence of terms is an important task. For the relational algebra, the equiv-
alence of terms is based on the well-known algebraic properties of the relational operators. There
are also well-known logical equivalences for built-in operators. However, the application dependent
object signature introduces new types and operators, into the object algebra, for each application.
The object query optimizer must be capable of incorporating this application specific knowledge.
Thus, semantic information, or knowledge about the object signature, for an application, is ex-
pressed declaratively, as integrity constraints. They are specified as object equivalences, and define
the correct transformations between equivalent algebraic terms with variables. Object equivalences

are defined as follows:

Definition 2.3 Assume an object signature (0,3 »,<,Z) and a set of named variables NV

o Let X be a set of variables which are disjoint from NV. Let Fy, Fy € T(NV UX) be two well
typed terms using variables X |J NV having the same type. Then, the triple (X, Ey, F3) is
an object equivalence. If X ={xq, -+, 21} and z; has the type s; for i=1,---,n, then the object

equivalence is the following first order formula:
Yy of type s1,---, Yo, of type s, (Fy1 ~ FEs).

o The equivalence (X, Ey, Fy) is valid in the algebra, if, for all instantiation ¢ for variables
NV UX, the result of the evaluation of term Fy is identical to the result of the evaluation of

term FEs.
Example 2.5

The following are example integrity constraints that are specified as object equivalences, for the
object schema in example 2.1:

a) There is a 1-to-many inverse association between instances of Country and City, via residents
and city, as follows:

V x in ext(Country) Vy in ext(City) IsIn(x.cities, y) ~ x.country = y

b) The capital of a country must also be a city of this country.

V x in ext(Country) IsIn(x.cities, x.capital) ~ TRUE

An_optimizer uses object equivalences as rewriting rules, to generate equivalent plans.!:

LA type-based pattern-matching algorithm, used by the optimizer, is described in [Florescu and Valduriez (1994)]

www.manaraa.com

Definition 2.4 Given a valid object equivalence r=(X, Fy, F), and a query t € T(NV), then
t=1t', where t' € T(NV), if there is a subexpression t" of t, and a substitution 8 for the variables
X, such that t" =F10 and t' is obtained by replacing t'' in t by F0; t' is an equivalent query for t.

2.3 The Flora optimizer architecture

The Flora optimizer architecture is described in detail in [Florescu and Valduriez, (1994)]. A
critical design decision was to use (declarative) semantic information together with hard-coded
transformations in a uniform manner, in generating the search space. This is supported by the
modular nature of the optimizer architecture, which strikes a balance between extensibility (allowing
the addition of new transformation rules), and efficiency (by hard-coding some transformation
rules).

Knowledge that is described declaratively include the algebraic properties of built-in operators
and user-defined operators, (e.g., commutativity of the union), integrity constraints for each ob-
ject schema (e.g., inverse links), and the correspondence between logical operators and physical
operators that implement them. (We do not discuss this last category in the context of HDBMS.)

The Flora optimizer is composed of modules, within a hierarchy. FEach module has a specific goal
and a strategy, which could include invoking another module. For each query plan that is input,
a module produces one or several equivalent query plans. Major modules are query simplification
(which include some hard-coded transformations such as un-nesting, quantifier elimination, etc.),
and logical transformation (using logical equivalences and semantic equivalences). Other optimizer

modules such as operator ordering are not discussed in the context of the HDBMS.

3 Heterogeneous object equivalences and the search space

Just as object equivalences were used to incorporate application specific domain knowledge, we use
heterogeneous object equivalencesto specify mapping knowledge between entities in the global object
schema, and remote entities in the target schema, (which may be relational or object schema). These
heterogeneous equivalences are to be utilized during optimization. Normally, we do not attempt to
share actual object identifiers across databases in a HDBMS, and any links between entities must
necessarily be value-based. The heterogeneous equivalences express the link between an object
instance that is created in the global schema, and the “values” corresponding to this object, which
are imported from the target databases. We first present an example of a simple heterogeneous

object equivalence. Then, we present a formal definition.

Example 3.1
Global object schema Remote relational schema
Class_globalPerson remPerson(Pname, Page, Pssn)

{ name: string, age: integer, ssn: string}

www.manaraa.com

In this example, there is a class globalPerson in the global schema, and a corresponding
relation remPerson in the target relational schema. We express a heterogeneous equivalence in a
straightforward manner, to reflect that a tuple of the relation remPerson corresponds to an instance

of the class globalPerson. The equivalence is as follows:

ext(globalPerson) ~ Select(NewObject([name := x.Pname,
age := x.Page,
ssn := x.Pssn], x in remPerson))

We now define the heterogeneous object equivalence formally. We use a heterogeneous object signa-

ture to describe the HDBMS environment, consisting of the global schema and all remote schemaf(s).

Definition 3.1 Given a global object signature (09, Y ng, <9,19), and a set of n remote object
signatures, (corresponding to n remote schema(s), (07,3 or,<:,17), i = 1,n, then, a heteroge-
neous object signature is (O", Y on, <", I "), where l

O" =09 U (Uzt OF)0 o =00 U (Uizin Zor) <" = =9 U (Uimin <)), and
I9(0) if o€ 9

unction I"(0) for an object of type o =
f (0) f ject of typ {U(o)if oe o

We assume that the object type names, and the user-defined operator names,? in the global

schema and the remote schema(s) are disjoint.

Definition 3.2 Suppose NVI, NV, i = 1,n, are the set of named variables, of the global schema,
and the remote schema(s), respectively. Then, the set of named variables in the heterogeneous

schema is NVh = NV9 | (U NVT).

i=1,n

In the case of a target relational schema, the corresponding object signature is (0,9,0,0) and
the named variables are the set of relation names.

We can now define a heterogeneous object equivalence, as follows:

Definition 3.3 (Heterogeneous object equivalence)

Suppose o is an object type name in the global schema, Cy,Cy,---,C, € NV" are named collections
in the HDBMS (i.e., global and remote schema(s)), prede T({z1,---,z,}) and it is of type bool,
and proje T'({x1,---,x,}) and it is of type 19(0). Then

ext(o) ~ Select (NewObject (proj), z; in C; and z3 in Cy and --- and z, in C,,, pred)
is a heterogeneous object equivalence.

This definition specifies the extent of a class o, in the global schema, (similar to a view). Objects
of the class o are created after importing data from the remote database(s). Each query on the

objectutypesompingthesglobalgschema, referred to as ext (o), will obtain instance(s) of some data

“In this paper, we do not consider any user-defined operators in the remote schema.

www.manaraa.com

values, as specified in the Select(NewObject(---), ---) definition. The query will create a new
object for each appropriate (combination of) value(s). In this paper, we assume that there is some
knowledge of a “key”, with an implicit uniqueness constraint, which is used to correctly specify
heterogeneous equivalences.

Next, we define the heterogeneous search space for the HDBMS environment. We build on a
previous definition of the search space Fquiv(t), expressed wrt a single object schema. We define

SearchSpace(t), for the HDBMS, for input query ¢ in the global object schema, as follows:

Definition 3.4 Let t be a term of an object signature of the global object schema, t € T(NVY).
The heterogeneous search space for t is the set of equivalent queries, t', such that they are expressed

only with named variables corresponding to the remote schema(s).
SearchSpace(t) ={t' €T (U;zy, NVi)|[t=t} VieT(NVY)

We now address three important issues that affect heterogeneous equivalences in a HDBMS.
Object Reference: Consider an attribute of an object whose value refers to another object, in
either the global schema, or in some remote DBMS. It could also be an imaginary object that is
created. Such a situation is not considered in [Abiteboul and Bonner (1991)]. One possibility is to
create a new object, for each reference to this object. However, if there were multiple references
to this object, then this solution could lead to multiple objects (identifiers) corresponding to an
identical set of values. This is a problem, since it is only on the basis of the “values” that we are able
to identify equivalences in the HDBMS, and create new (imaginary) objects in the heterogeneous
environment. The solution is to avoid the creation of new objects, in this context.

Recursive Classes: There is a related problem when we consider classes that are recursively
defined. Suppose thereis a class globalPersonin the global schema, and two relations in the remote
schema, remPerson and remMarried, from which globalPerson instances are to be populated.
Note that spouse refers to an instance of globalPerson, hence the recursive reference in the

heterogeneous object equivalence, as follows:

Example 3.2
Global object schema Remote relational schema
Class globalPerson remPerson(Pname, Page)

{ name: string remMarried(Pnamel, Pname2)

age: integer

spouse: globalPerson }

We define the heterogeneous object equivalence recursively, as follows:

ext (globalPerson) ~
Select(NewObject ([name := x.Pname

age := x.Page

10 www.manaraa.com

spouse := Select y,y in ext(globalPerson) & z in remMarried
& ((y.name = z.Pnamel & x.name = z.Pname2)
or (y.name = z.Pname2 & x.name = z.Pnamel))]

x in remPerson)

However, these recursive references may give rise to another problem. Consider a query in

the global schema which attempts to access objects (identifiers) from the remote schema, rather
than some “descriptive value” associated with the objects. If there is a recursive heterogeneous
equivalence defined for this object, then the query transformation algorithm will recursively apply
the heterogeneous equivalences, and will not terminate. Consequently, we can only deal with queries
that access “values” from remote databases, in HDBMS. Since we do not share object identifiers
across databases in HDBMS, this solution will suffice for our purposes. However, this is a problem
that merits further research [Raschid et al (1995)].
Referencing Existing Objects: So far we have expressed the heterogeneous equivalences in a
straightforward manner, creating new objects for each combination of values obtained from some
remote database(s), when a query is executed. This solution would be unsatisfactory if these objects
are to be made persistent in the global environment, i.e., we would no longer be able to keep on
creating new objects. A further drawback is that we are not able to identify already existing
objects, for which there are existing object identifiers, in the global environment, but whose data
values may only be available in some remote database(s). Some solutions were briefly discussed in
[Abiteboul and Bonner (1991)], and these problems also merit further study.

4 Examples of queries in the heterogeneous search space

We describe the control strategy of the optimizer briefly, to generate equivalent queries in the het-
erogeneous search space. A Flora query, posed wrt the global schema entities, is first syntactically
simplified. Next, any applicable logical transformations wrt global schema entities are applied.
This includes both logical equivalences wrt built-in operators and semantic equivalences based on
integrity constraints in the global schema. We then apply relevant heterogeneous equivalences,
so that references to global schema entities are replaced with references to entities in the remote
schema(s). Further, we apply any applicable logical transformations (based on semantic equiva-
lences wrt the remote schema entities). In this paper, we do not consider logical equivalences for
built-in operators in the remote schema(s). Since the application of the heterogeneous equivalences
may introduce new references to entities in the global schema, we continue until all such refer-
ences have been replaced. The process may produce one or more equivalent plans, wrt the remote
schema(s). We also do not consider the control strategy for operator ordering, or for selecting a
particular physical implementation for an operator, etc.

In this section we use a suite of examples to illustrate the process of simplifying queries and
obtaining equivalent queries in the heterogeneous search space. We summarize the examples as

follows: The optimizer obtains a simplified query wrt the remote schema through the uniform

11 www.manaraa.com

application of heterogeneous object equivalences, syntactic simplification, logical simplification, and
semantic equivalences. Even with redundancy of heterogeneous object equivalences, the optimizer
correctly produces a simplified query. However, the optimizer can also use alternative heterogeneous
and semantic equivalences to produce several candidate equivalent queries, from which the optimal
query must be chosen. When remote schema entities are located in multiple remote databases, the
optimizer can produce equivalent queries, as well as sub-queries. If these equivalent queries refer to
entities in multiple remote databases, then we decompose the queries. We use some simple syntactic
analysis of the queries, and information on where the remote entities are located, to obtain simpler

sub-queries, for each of the remote databases.

4.1 An example applying logical and heterogeneous equivalences

This example demonstrates the application of logical and heterogeneous equivalences, to produce
a simplified equivalent query. Logical equivalences typically express some possible simplifications
wrt a built-in operator. In this example, we consider both the cardinality operator card, and the
membership operator Isin, both of which are defined for sets.

In the example global schema, the class Student has an attribute courses referring to a set
of Course instances, which are also in the global schema. This object reference is reflected in the
heterogeneous equivalence rule Hy, defining Student, which refers to RemStudent and RemEnrolled
in the remote schema, as well as to instances of Course in the global schema. There is a rule Hs,
the heterogeneous equivalence corresponding to the class Course in the global schema. The schema

and heterogeneous equivalences are as follows:

Example 4.1
Global schema Remote schema
Class Student Relation RemEnrolled(namel, coursel)

{ sname: string

courses: set(Course) } Relation RemStudent(namel)

Class Course
{ cname: string Relation RemCourse(coursel, timel)

time: float }

The heterogeneous equivalences are as follows:

[H{] ext(Student) ~
Select(NewObject([sname: x.namel,
courses:=Select(y,y in ext(Course) & z in RemEnrolled &
z.namel = x.namel & z.coursel = y.cname)],

X in RemStudent)

12 www.manaraa.com

~ Select(NewObject([sname:=--
courses:=Select(y, y in ext(Course) & z in RemEnrolled
& PRED(x,y,z)], x in RemStudent)

where PRED(x,y,z) is the predicate (z.namel=x.namel & z.coursel=y.cname)

[Hy] ext(Course) ~ Select(NewObject([cname:=t.coursel, time:=t.timel]), t in Coursel)

We next consider a logical equivalence rule corresponding to the Flora built-in cardinality operator,
defined on sets, for example, card(X), where X is of type set (Course). Recall that all references to
a remote schema must be value-based. The following equivalence rule allows us to perform a simpli-
fication so that the cardinality operator is evaluated over a set of course names, for set(Course),
and eventually over the values of coursel from the remote database. For simplicity, we present

the particular form of the logical equivalence rule, as directly applicable to this query, as follows:
[L1] V X: set(Course) card(X) ~ card(Select(x.cname, x in X)

Consider a query to select the names of all students enrolled in exactly two courses. The corre-

sponding Flora query is as follows:
Select(t.sname, t in ext(Student), card(t.courses) = 2)

We follow this query through the following steps, applying the equivalences Hy, Iy and then H,
in turn, as follows:

[Applying Hy for ext(Student)]

Select(t.sname, t in Select(NewObject(
[sname:=x.namel,
courses:=Select (y, y in ext(Courses),
z in RemEnrolled & PRED(x,y,z))],
x in RemStudent),

& card(t.courses) = 2)
[Simplifying for t.sname and applying L; to card(t.courses)]

Select(((NewObject([sname:=x.namel, courses:= ...])).sname, x in RemStudent,
& card(Select(c.cname, ¢ in t.courses))=2)
& t in Select(Newobject(
[sname:=x.namel,
courses:=Select (y, y in ext(Courses),
z in RemEnrolled & PRED(x,y,z))])))

[Simplifying for t.courses]

Select(x.namel, x in RemStudent,
& card(Select(c.cname, c in
Select(NewObject [courses:=Select (y, y in ext(Courses),
z in RemEnrolled & PRED(x,y,z)])).courses))=2)

13 www.manaraa.com

[Simplifying card(.....)]

Select(x.namel, x in RemStudent,

& card(y.cname, y in ext(Course) & z in RemEnrolled, & Pred(x,y,z)))=2)
[Applying Hs to ext(Courses)]

Select(x.namel, x in RemStudent,
& card(y.cname, y in Select(NewObject(cname:=t.coursel, time:=t.timel),
t in RemCourse)
& z in RemEnrolled, & Pred(x,y,z)) = 2)}

[Further simplifying |

Select(x.namel, x in RemStudent,
& card(Select(t.coursel, t in RemCourse & z in RemEnrolled &

Z.namel=x.namel & z.coursel=t.coursel) == 2)

The final simplified query only retrieves relevant information from the remote database. It also

evaluates the cardinality operator over the values of coursel.

Next, we consider a query that uses the expensive membership operator IsIn. We use a corre-
sponding logical equivalence to eliminate this operation. The following query selects the names of

all students enrolled in “cs1017:
Select(x.name, x in ext(Student), IsIn(Select(y.cname, y in x.courses), ‘‘cs101’’)
We first simplify the query as follows:

Select(x.name, x in ext(Student), y in ext(Course) &

IsIn(x.courses, y) & y.cname = ‘‘cs101’’

We then apply equivalence H; to ext(Student) and simplify further, (for x.name) to obtain the

following:

Select(t.namel, t in RemStudent, y in ext(Course), &
IsIn(Select(z, z in ext(Course) & z’ in RemEnrolled & PRED(t,z,z’)), y)

& y.cname = ‘‘cs101’’

where PRED(t,z,z’) ~ (2’ .namel=t.namel & z’.coursel=z.cname)

We next apply the logical equivalence Ly wrt the operator IsIn. This equivalence eliminates the
membership test. For simplicity, we give the specific form of this equivalence, such that it can be
directly applied to this query, to clearly illustrate the transformation for this query. The logical

equivalence rule for the IsIn operator would actually be more general.
[L5] IsIn(Select(z, z in ext(Course) & z’ in RemEnrolled & PRED(t,z,z’)), y)

~y =2 & z in ext(Course) & z’ in RemEnrolled & PRED(t,z,z’)

14 www.manaraa.com

After applying this equivalence, and simplifying to eliminate z (replacing with y) we obtain the

following query, in which the expensive membership test IsIn has been eliminated:

Select(t.namel, t in RemStudent, y in ext(Course), &
z’ in RemEnrolled & PRED(t,y,z’) & y.cname = ‘‘cs101’’

We then apply the equivalence Hy for ext(Course), and simplify further, to obtain the following

query, which only performs join operations (and not a membership test):

Select(t.namel, t in RemStudent, & a in RemCourse & z’ in RemEnrolled,

& z’ .namel = t.namel & z’.coursel = a.coursel & a.coursel = ‘‘cs101’’

4.2 An example applying semantic equivalences

This example demonstrates the application of semantic, logical and heterogeneous object equiva-
lences, to produce a simplified equivalent query. Typically, semantic equivalences correspond to
integrity constraints and in this example, we consider semantic equivalences in the global schema.
Later, we discuss the issue of validating these equivalences in the remote databases. We con-
sider a fairly complex query which is expressed using several membership tests, all of which are
eliminated. We also demonstrate that simplification is possible, even with redundancy of the het-
erogeneous equivalences. In the global schema, both classes Passenger and Flight have attributes

departs and passengers, respectively, which refer to each other. They are as follows:

Example 4.2
Global schema Remote schema
Class Passenger Relation RemPassenger(Pnol, Pnamel, Pcityl)

{ name: string
departs: set(Flight) Relation RemPassFlight(Pnol, Fnol)
city: string

Pno: integer } Relation RemFlight(Fnol, Ftimel)

Class Flight
{ Fno: integer
passengers: set(Passenger)

time: float }

Consequently, the equivalence H; for ext(Passenger) refers to instances of Flight in the global
schema, and to tuples in RemPassenger, RemPassFlight, etc., in the remote schema. The equiva-

lence Hj for ext(Flight is similar. They are as follows:

[Hi] ext (Passenger) ~
Select(NewObject ([name:=x.Pnamel,

departs:= Select(y, y in ext(Flight), z in RemPassFlight,

15 www.manaraa.com

& z.Pnol = x.Pnol & z.Fnol = y.Fno),
city:=x.Pcityl, Pno:= x.Pnol 1)
x in RemPassenger)
~ Select(NewObject ([name:=x.Pnamel,

departs:= Select(y, y in ext(Flight), z in RemPassFlight,

& PRED(x,y,2),
city:=x.Pcityl, Pno:= x.Pnol 1)
x in RemPassenger)

where PRED(x,y,z) ~ z.Pnol = x.Pnol & z.Fnol = y.Fno

[Ho] ext (Flight) ~
Select(NewObject ([Fno:=t.Fnol, time:=t.Ftimel,
passengers:= Select(w, w in ext(Passenger),
p in RemPassFlight,
& p.Pnol = w.Pno & p.Fnol = t.Fnol) 1]
t in RemFlight)
~ Select(NewObject([Fno:=t.Fnol, time:=t.Ftimel,
passengers:= Select(w, w in ext(Passenger), p in RemPassFlight,
& PRED(p,w,t)], t in RemFlight)
where PRED(p,w,t) ~ p.Pnol = w.Pno & p.Fnol = t.Fnol

Finally, we have the following semantic equivalence Sy, in the global schema, expressing an integrity

constraint between instances of Flight and Passenger, through attributes passengers and departs:

[S1] ¥V p in ext(Passenger) V f in ext(Flight) IsIn(f.passengers, p)
~ IsIn(p.departs, f)

The heterogeneous equivalences, combined with the semantic equivalence, provide multiple ways
to obtain alternative queries, which are redundant. However, in many instances, there is only one
correct simplified query and we demonstrate that the optimizer obtains this query. The following

query selects the names of passengers, and co-passengers, from Paris on a flight that departs at 11:

Select([a.name, [c.name]], a in ext(Passenger), b in a.departs, ¢ in b.passengers,

& b.time = ‘“11h’’ & a.city = ‘‘Paris’’
We first apply the semantic equivalence S1, and we obtain 3 equivalent queries, as follows:

1. Select([a.name, [c.namel], b in ext(Flight), a in b.passengers, ¢ in b.passengers,

& b.time = ““11h’’ & a.city = ‘‘Paris’’

16 www.manaraa.com

2. Select([a.name, [c.name]], a in ext(Passenger), b in ext(Flight),
c in ext(Passenger),
& b.time = ““11h’’ & a.city = ¢ ‘Paris’’
& IsIn(a.departs, b) &IsIn(d.passengers, c)
3. Select([a.name, [c.name]], a in ext(Passenger), c in ext(Passenger),
& b in Intersection(a.departs, c.departs))

& b.time = ““11h’’ & a.city = ‘‘Paris’’

We choose to expand the first of these queries. However, we can demonstrate that all three queries

will reduce to an identical query wrt the remote schema.

Select([a.name, [c.name]], a in ext(Passenger), b in a.departs, ¢ in b.passengers,

& b.time = ‘“11h’’ & a.city = ‘‘Paris’’

We first apply heterogeneous equivalence Hy to simplify the following query fragment:

a.name { a in ext(Passenger) } ~

Select(NewObject([name:=x.Pnamel
departs:= Select(y, y in ext(Flight), z in RemPassFlight,
& PRED(x,y,z)),
city:=x.Pcityl,

Pno:= x.Pnol]) x in RemPassenger) .name

~ x.Pnamel {x in RemPassenger}

We similarly simplify fragments (c.name {c in ext(Passenger)}) , and {b in ext(Flight) }
. The query fragment containing the IsIn membership operator can also be simplified. We first ap-
ply equivalence Hy for {a in ext(Passenger)} and H, for {b in ext(Flight)} , and simplify,
to obtain the following fragment (details are not shown here):

IsIn(a.departs, b) { a in ext(Passenger), b in ext(Flight)} ~

IsIn(Select(y, y in ext(Flight) & z in RemPassFlight, & x in RemPassenger
& PRED(x,y,2),
NewObject ([Fno:=t.Fnol,
time:=t.Ftimel,
passengers:= Select(w, w in ext(Passenger),
p in RemPassFlight, &PRED(p,w,t]
t in RemFlight))

We can now apply a specific form of the logical equivalence, similar to L, which simplifies the IsIn
operator. It was also used in the previous example. This equivalence allows us to substitute the
secondpargumentliewlbgjectsfor y in the first argument, for the Isin operator. We omit the details

here. After applying this equivalence, we simplify further, for those variables that occur in the

17 www.manaraa.com

arguments of PRED. This step eliminates the expensive membership operation, and produces the
following equivalent query fragment:
~ {p in RemPassFlight, x in RemPassenger, t in RemFlight & PRED(x,t,p)}

We apply a similar simplification for the following fragment, to eliminate the membership test:
IsIn(b.passengers, c) { b in ext(Flight), c in ext(Passenger) }

We are also able to obtain the following simplifications for other fragments:
b.time { b in ext(Flight) } ~ t.Ftime { t in RemFlight }
a.city { a in ext(Passenger) } ~ x.Pcityl { x in RemPassenger }
Finally, we obtain the following simplified query, in which a, b and c are substituted by x, x’
and t, resp. Note that in the final query, we have completely eliminated the membership test. Also
note that we obtain an identical query if we start with the other two equivalent queries as well.

The final query is as follows: where there are no membership tests.

Select(([x.name, [x’.name]], x in RemPassenger, x’ in RemPassenger, t in RemFlight,
p in RemPassFlight, w in RemPassFlight
& t.time = ““11h’’ & x.city = ‘‘Paris’’
& PRED(x,t,p) & PRED(w,x’,t)

where PRED(x,t,p) ~ P.Pnol = x.Pnol & z.Fnol
and PRED(w,x’,t) ~ w.Pnol = x’.Pnol & w.Fnol

t.Fnol
t.Fnol.

4.3 Obtaining multiple equivalent queries

In this example, we apply semantic equivalences in the remote schema, and heterogeneous equiv-
alences, to obtain multiple equivalent queries. The semantic equivalences correspond to implicit
integrity constraints based on the uniqueness of a “key”. The costs of each alternate query must
be determined before choosing an optimal query. We also demonstrate that explicit joins may be
replaced by path expressions, (which may be more efficient).

For example, in the global schema, relationships among object instances are explicit. Attributes
Eno and Pno in the class EmpProj explicitly store the corresponding keys of Employee and Project,
respectively. However, the remote schema in this example is an object schema, and there are object
references in the remote schema, e.g., managerl of class RemProject refers to an instance of the
class RemEmployee. Using a semantic equivalence in the remote schema, based on the implicit
integrity constraint for keys, we are able to eliminate the joins in the simplified query. The schema

are as follows:

Example 4.3
Global schema Remote schema
Class Project Class RemProject
{ Pno: integer { Pnol: integer
Pmanager: integer } managerl: RemEmployee

workersl: set(RemEmployee) }

18 www.manaraa.com

Class Employee

{ Eno: integer Class RemEmployee
Ename: string { Enol: integer
Esal: float } salaryl: float

worksinl: RemProject
Class EmpProj Enamel: string }
{ Eno: integer

Pno: integer }

The heterogeneous equivalences are as follows, with two equivalences Hs and H, for ext (EmpProj):

[H;] ext (Project) ~
Select(NewObject([Pno:=x.Pnol, Pmanager:=x.managerl.Enol],
x in ext(RemProject)))
[Hy] ext (Employee) ~
Select(NewObject([Eno:=y.Enol, Ename:=y.Enamel, Esal:=y.salaryl],
y in ext(RemEmployee)))
[H3] ext (EmpProj) ~ Select(NewObject([Eno:= z2.Enol, Pno:= zl1.Pnol],
z1 in ext(RemProject), z2 in zl.workersl))
~ [H4] ext(EmpProj) ~ Select(NewObject([Eno := z.Enol, Pno := z.worksinl.Pnol],
z in ext(RemEmployee))) [Hy is equiv. to Hs]

We have the following semantics equivalences in the remote schema, wrt RemEmployee and
RemProject, corresponding to an implicit integrity constraint, based on the uniqueness of the keys:
[S1] Vpl in ext(RemProject) V p2 in ext(RemProject) (pl = p2) ~ (pl.Pnol = p2.Pnol)
[Se] Vel in ext(RemEmployee) Ve2 in ext(RemEmployee) (el = e2) ~ (el.Enol = e2.Enol)

Consider a query in the global schema to retrieve project managers whose salary is less than

that of their employees, as follows:

Select(x.Pmanager, x in ext(Project), y in ext(Employee), z in ext(EmpProj),
t in ext(Employee)
& x.Pno = z.Pno & y.Eno = z.Eno & x.Pmanager = t.Eno & t.Esal < y.Esal)

Select(x.Pmanager, x in ext(Project), y in ext(Employee), z in ext(EmpProj),

t in ext(Employee) & PRED(X,y,z,t) & t.Esal < y.Esal)

where PRED(xX,y,z,t) ~ x.Pno = z.Pno & y.Eno = z.Eno & x.Pmanager = t.Eno
Note the explicit join, represented by PRED(x, y, z, t), which is eventually eliminated by
using path-expressionsinthesimplified query, wrt the remote schema. We first apply heterogeneous

equivalences Hy, Hs, and Hj, and perform some simplifications to obtain the following:

19 www.manaraa.com

Select(a.managerl.Enol, a in ext(RemProject), b in ext(RemEmployee),
¢ in ext(RemEmployee), d in ext(RemEmployee),
a.Pnol=c.worksin.Pnol & b.Enol=c.Enol & a.managerl.Enol=d.Enol

&d.salaryl < b.salaryl)

We then apply the equivalence S; to the equality (a.Pnol = c.worksin.Pnol), to obtain the sub-
stitution {a | c.worksin }. Similarly, from (b.Enol = c.Enol) and Sy, we obtain the substitution
{b | ¢ }. Finally, we obtain the following simplified equivalent query, which has a single explicit

join and several path expressions:

Select(c.worksin.manager.Eno, ¢ in ext(RemEmployee), d in ext(RemEmployee),

& c.worksinl.managerl.Enol = d.Enol & d.salaryl < c.salaryl)

Alternately, we can utilize the equivalences Hy, Hy and Hs, perform some simplifications, and
then apply S; and S; to obtain the following query, in which «all explicit joins have been replaced

by path expressions:

Select(cl.managerl.Enol, c1 in ext(RemProject), ¢2 in cl.workersl

& cl.managerl.salaryl < c2.salaryl)

The first query involves two variables that range over instances of the class RemEmployee and has
one explicit join. The second query has one variable that ranges over the remote schema instances
of RemProject and no explicit join. The cost for evaluating each of these queries would have to be

estimated, before selecting the optimal query.

4.4 Simplifying a nested query and query decomposition

This example demonstrates the un-nesting of a query, together with the application of heteroge-
neous object equivalences, to obtain a query wrt the remote schema. The query may reference
information in multiple remote schema. Thus, after obtaining a simplified query wrt the remote
schema, the optimizer will use some syntactic analysis of the join conditions in the query, together
with information about the co-location of relations in the remote databases, to obtain several
possible (nested) sub-queries, one for each of the remote target databases.

In the example remote schema, we assume that RemPeople and RemEarns are in one remote

database, and RemReside and RemCity are in another database. The schema are as follows:

Example 4.4
Global schema Remote schema #1
Class Person Relation RemPeople(namel, agel)
{ name: string Relation RemEarns(namel, incomel)

age: integer

income: float }

20 www.manaraa.com

Remote schema #2

Class City
{ cname: string Relation RemCity(cnamel)
residents: Set(Person) } Relation RemReside(namel, city1l)

We have the following heterogeneous equivalence rules:

Hy ext (City) ~
Select(NewObject([cname:= z1l.cnamel,
residents:=Select(y, y in ext(Person), & z2 in RemReside
& z2.namel = y.name & z2.cityl = zl.cityl) 1,
z1 in RemCity))

H; ext (Person) ~
Select(NewObject([name:= z1.namel, age:=zl.agel, income:=z2.incomel],

z1 in RemPeople, z2 in RemEarns, & zl.namel = z2.namel))

The following nested query selects people who reside in the city Paris and have zero income:

Select(x.name, x in Select(y, z in ext(City) & y in z.residents, &z.cname=‘‘Paris’’

y.income = 0), x.age > 60)
We first un-nest this to obtain the following query:

Select(y.name, z in ext(City) & y in z.residents & z.cname = ‘‘Paris’’

& y.income = 0) & y.age > 60)

We then apply the equivalence Hy for ext (City) and simplify to eliminate irrelevant variables, and

obtain the following:

Select(y.name, z1 in RemCity
& y in Select(p, p in ext(Person), & z2 in RemReside
& z2.namel = p.name & z2.cityl = zl.cityl)

& zl.cnamel = ‘‘Paris’’ & y.income = 0 & y.age > 60)

We now apply the equivalence Hy for ext(Person) and simplify further, to obtain the following

un-nested query:

Select(z3.namel, z1 in RemCity, z3 in RemPeople, z4 in RemEarns, z2 in RemReside
& z3.namel = z4.namel & z2.namel = z3.namel & z2.cityl = zl.cityl

& zl.cnamel = ‘‘Paris’’ &z4.incomel = 0 & z4.agel > 60)

We stated earlier that relations RemEarns and RemPeople are co-located in remote database #1,
and RemCity and RemResides are co-located in database #2. Based on a syntactic analysis of the
join conditions of this query, we would obtain several possible (nested) sub-queries. We would need

to evaluate the cost of each set of queries before determining an optimal plan. Some possibilities

include (5Qq, SQ2) and (SQs, SQ4, SQs5), as follows:

21 www.manaraa.com

SQ Select(z3.namel, z4 in RemEarns, z3 in RemPeople
& z4.incomel = 0 & z3.agel > 60 & z3.namel = z4.namel)
SQ2 Select(z2.namel, z5 in SQ; & z1 in RemCity & z2 in RemReside

& z2.namel = z5.namel & z2.cityl = zl.cnamel & zl.cnamel = ‘‘Paris’’)

SQs3 Select(z3.namel, z4 in RemEarns, z3 in RemPeople

& z4.income = 0 & z3.age > 60 & z3.namel = z4.namel)
SQ4 Select(z2.namel, z1 in RemCity, z2 in RemReside

& z2.cityl = zl.cnamel & zl.cnamel = ‘‘Paris’’)

SQs5 Select(x.namel, x in SQs,y in SQ4 & x.namel = y.namel)

5 Summary and future research

In this paper, we defined the heterogeneous search space for a HDBMS, where the global schema
and query language are based on the Flora language and object model, and where the target re-
mote databases may be either relational or object-oriented. We have extended a modular rule-based
query optimizer which inputs a query in the global schema and obtains equivalent queries (or mul-
tiple sub-queries) wrt the remote schema entities. The optimizer uniformly performs (1) syntactic
simplification, (2) logical transformations based on logical equivalences wrt built-in operators in
the global schema, (3) logical transformation based on semantic equivalences based on integrity
constraints in either the global schema or the remote schema, and (4) heterogeneous simplification,
based on heterogeneous object equivalences, which map remote schema entities to entities in the
global schema. The Flora optimizer has been implemented to handle syntactic simplification, and
logical transformations based on logical and semantic equivalences. It is being extended to perform
heterogeneous equivalences as well.

There are a number of issues that require further research. First, the semantic equivalences are
based on integrity constraints in the global schema or remote schema. The heterogeneous object
equivalences are also based on implicit integrity constraints, depending on the notion of a unique
key. The task of validating these equivalences in the HDBMS is critical, if we are to correctly
transform queries wrt the remote databases. There are several possible strategies for validation.
We may specify some queries, in the global schema, to validate integrity constraints, and transform
these queries and generate a set of queries wrt the remote schema. The queries can then be validated
against the target databases. A different approach is to extend the solver (corresponding to the
algebraic language) to induce integrity constraints wrt each remote schema, for the constraints in
the global schema. We are considering both of these approaches, in future research.

We have also not considered built-in operators in the schema of the target databases, and
corresponding logical equivalences. We have made the assumption that new objects are always
createdrinvtlierglobalvenvironment, when a query executes and imports data values from the target

databases. However, we must consider alternative scenarios, where an object may already be

22 www.manaraa.com

materialized, or where some portion of the object may be materialized. We must also develop a
cost model for the HDBMS. We also have to address the problem of determining a search strategy,
to enumerate the execution plans so that the best one may be selected.

Finally, in this paper, we assumed a global schema architecture for the HDBMS. We can extend
our results to define a heterogeneous search space for other architectures, e.g., a federated HDBMS

or a canonical HDBMS architecture.

6 Bibliography

Abiteboul, S. and Bonner, A. (1991) “Object and views,” Proc. of the SIGMOD International Conference, 238-247.

Ahmed, R., de Smedt, P., Du, W., Kent, W., Ketabchi, M.A., Litwin, W.A., Rafii, A. and Shan, M.-C. (1991) “The
Pegasus heterogeneous multidatabase system,” IEEE Computer, 24(12), 19-27.

Albert, J., Ahmed, R., Ketabchi, M., Kent, W. and Shan, M.-C. (1993) “Automatic importation of relational schemas
in Pegasus,” Proc. of the Workshop on Research Issues in Data Engineering, ICDF-93.

Arens, Y. and Knoblock, C.A. (1992) “Planning and reformulating queries for semantically-modeled multidatabase

systems,” Proceedings of the First International Conference on Knowledge Management.

Arens, Y., Chee, C.Y., Hsu, C.-N., Knoblock, C.A. (1993) “Retrieving and integrating data from multiple information
sources,” International Journal of Intelligent and Cooperative Information Systems. Vol. 2, No. 2., 127-158.

Bancilhon, F., Cluet, S. and Delobel, C. (1989) “Query languages for object-oriented database systems,” Proceedings

of the International Conference on Database Programming Languages.

Barsalou, T. and D. Gangopadhay (1992) “M(DM): An open framework for interoperation of multimodel multi-

database systems,” Proceedings of the International Conference on Data Engineering.

Batini, C., Lenzerini, M. and Navathe, S.B. (December 1986) “A comparative analysis of methodologies for database
schema integration,” ACM Computing Surveys, Vol. 18, No. 4, 323-364.

Chang, Y., Raschid, L. and Dorr, B.J. (1994) “Transforming queries from a relational schema to an equivalent object

schema: a prototype based on F-logic,” Proc. of the ISMIS-94 International Symposium.

Chomicki, J. and Litwin, W. (1994) “Declarative definition of object-oriented multidatabase mappings,” in Distributed
Object Management, Oszu, M.T., Dayal, U. and Valduriez, P. (eds.) Morgan Kauffman Publishers.

Dayal, U. and Hwang, H. (1984) “View definition and generalization for database integration in a multidatabase
system,” IEEE Transactions on Software Engineering, 10(6), 628-645.

Du. W., Krishnamurthy, R. and Shan, M.-C. (1992) “Query optimization in heterogeneous DBMS,” Proceedings of

the International Conference on Very Large Data Bases.

Florescu, D. and Valduriez, P. (1994) “Rule-based query processing in the IDEA system,” Proc. of the Intl. Symp.
on Advanced Database Technology and their Integration, Nara, Japan, October 1994.

Guting, R.H. (1993) “Second-order signature: a tool for specifying data models, query processing and optimization,”
Proceedings of the International Conference on the Management of Data.

Kent, W. (1991) “Solving domain mismatch and schema mismatch problems with an object-oriented database pro-
gramming language,” Proceedings of the International Conference on Very Large Data Bases.

Kifer, M., Kim, W. and Sagiv, Y. (1992) “Querying object-oriented databases,” Proc. of the ACM Sigmod Conference.

Kim, W., Choi, I., Gala, S. annd Scheevel, M. (1993) “On resolving schematic heterogeneity in multidatabase sys-
tems,” Distributed and Parallel Databases, 1(3), 251-279.

Kim, W. and Seo, J. (December, 1991) “Classifying schematic and data heterogeneity in multidatabase systems,”
IFEFE Computer, pages 12—18.

Krishnamurthy, R., Litwin, W. and Kent, W. (1991) “Language features for interoperability of databases with

schematic discrepancies,” Proceedings of the ACM Sigmod Conference.

23 www.manaraa.com

Lakshmanan, L.V.S., Sadri, F. and Subramanian, I.N. (1993) “On the logical foundations of schema integration and
evolution in heterogeneous database systems,” Proc. of the DOOD Conf.; 81-100.

Novak,M., Gardarin, G. and Valduriez, P. (1994) “Flora: a functional-style language for object and relational algebra,”
, INRIA Tech. report.

Qian, X. (1993) “Semantic interoperation via intelligent mediation,” Proc. of Workshop on Res. Issues in Data

Engg..

Qian, X. and Raschid, L. (1995) “Query interoperation among object-oriented and relational databases,” Proceedings

of the International Conference on Data Engineering.

Raschid, L., Chang, Y. and B. Dorr (1994) “Query Transformation Techniques for Interoperable Query Processing

in Cooperative Information Systems,” Proceedings of the CooplS International Conference.

Raschid, L. and Chang, Y. (1994) “Interoperable query processing from object to relational schemas based on a

parameterized canonical representation,” Submitted to the IJICIS journal.

Sheth, A. and Larson, J. (1990) “Federated database systems for managing distributed, heterogeneous, and au-
tonomous databases,” ACM Computing Surveys, 22(3), 183-236.

Appendix A: Flora Types

Definition 1 (B,>"3) is a built-in signature , where B is the set of Flora built-in types and 3 g
is the set of Flora built-in operators, with signatures. Currently the Flora built-in types B={ int,
bool, float, string}. At present, 3z contains the following operators:

+, -, ¥ / : float xfloat—float and, or : boolxbool—bool
not : bool—bool <, <, >, > : float xfloat—bool
contains, like : stringxstring—bool =: 5 X s —bool for all type s

union, difference, intersection : {s} x {s} — {s} for all type s
card : {s} —float for all type s Isin : {s} x s —bool for all type s
IsEmpty : {s}—bool for all type s mazx, min, avg : {float}—float.

Definition 2 The algebra specific to an application domain is described by an object signature
(0,30,<,T), where O is the set of object type names, Y is the set of user-defined operators
(with their signatures), < is a partial order on O (corresponding to the inheritance relationship),

and I is a function which associates a state with every object type name o € O.

Definition 3 The set S o of Flora type expressions is an infinite set, recursively defined as follows:

(i) if b € B then b € Sp,o; (i1) if o € O then o € Spo;
(i11)(set type constructor) if s € Sp,o then {s} € Spo;
(tv)(tuple type constructor) if sy,---,s, € Sgo and f1,---, f, are attribute names,

then [fy 51, -, fn : 5,] € Sp.o for every n>1.

Definition 4 NV is a particular set of variables, the named variables, representing the persistent
roots of the databases. FEach named variable x; is associated with a name and a type, type(x;) €

Sps@md ot cxample object typeextensions represent particular named variables in an object schema.

24 www.manaraa.com

Appendix B: Flora Expressions

Definition 5 The set T(X) of well-typed terms, using variables X, is inductively constructed.

(i) If ¢ is a constant of type s, then c€ T(X) and it is of type s.

(ii) If € X is a variable of type s, then x€ T(X) and it is of type s.

(iii)(Operator application:) If op is a built-in or user-defined operator, with signature op:s; x
cee X 8y — 8, where ty,--+,t, € T(X) are of type sy, -, 8y, resp., then op(ty,---,t,)€ T(X), and
it 1s of type s.

(iv)(Tuple constructor:) Ifty,---,t, € T(X), and they are of type s1,- -+, S, resp., and fi,---, fu
are attribute names, then [fi 1= t1,---, fn := t,] € T(X), and it is of type [f1 : s1, -+, fu * Sn)
(n>1).

(v)(Attribute selector:) If t€¢ T(X) and it is of type [f1 : $1,- -, fu : Sn], then t.f; € T(X), and
it is of type s; (1<i<n).

(vi)(Set constructor:) If t;,---,t, €T(X), and they are of type s, then {t1,---,t,} €T(X) and it
is of type {s} (n>0).

(vii)(Object dereferencor:) If tec T(X) is of type o € O, then t.state € T(X) is of type I(0).
(viii)(Object constructor:) If o € O is an object type name, and t€ T(X) is of type I(0), then
new o(t) € T(X) and it is of type o.

(iz) (Forall, Exists operators:) If Cc T'(X) is of type {s}, and prede T(X J{z}) is of type bool,
then forall (x in C, pred) and exists(xz in C, pred)e T(X) are of type bool.

(z)(Selection:) If C1 € T(X) is of type {s1}, Cy € T(X Ha1}) is of type {s2}, ---, C, €

T(X U{xlv Tty xn—l}) is Oftype {Sn}; pT@dE T(X U{xlv Tty xn}) is Oftype bOOI; pTOjE T(X U{xlv o

is of type s. Assume that {xy,---,2,} and X are disjoint. Then,
select (proj, z1 in Cy and x3 in Cy and - - - and z, in C,,, pred) € T(X) and it is of type {s} (n>1).

25

i) xn})

www.manaraa.com

