
www.manaraa.com

De�ning the search space for query optimization in aheterogeneous database management system �Daniela Florescu��, Louiqa Raschidy, Patrick Valduriez����INRIA Rocquencourt, Projet RODINBP 105, 78153 Le Chesnay Cedex, France�rstname.lastname@inria.fr yCollege of Business and Management andInstitute for Advanced Computer StudiesUniversity of Maryland, College Park, MD 20742louiqa@umiacs.umd.eduNovember 9, 1994Abstract:We consider a heterogeneous database system (HDBMS) with a global object schema,and remote target databases that may be relational or object-oriented. The problemis to transform an initial query, posed against the global object schema in an ob-ject query language, into simpli�ed queries that can be e�ciently processed againstsome remote target databases. In the HDBMS, query optimization is made di�cultby schematic discrepancy, and the need to model mapping information between theglobal and target schema(s). In this paper, we address this problem by representingthe mappings from a target schema to the global schema, as a set of heterogeneousobject equivalences, in an algebraic language. These equivalences are the basis forde�ning the heterogeneous search space of an HDBMS optimizer. We extend amodular rule-based query optimizer to produce simpli�ed optimized queries for theHDBMS. The main result, reported in this paper, is the ability of the optimizer touniformly perform syntactic simpli�cations, logical and semantic equivalence trans-formations, as well as heterogeneous equivalence transformations.
�This research has been partially supported by the Advanced Research Project Agency under grantARPA/ONR 92-J1929 and by the Commission of European Communities under Esprit project IDEA.1

www.manaraa.com

1 IntroductionResearch in heterogeneous database systems (HDBMS) has focused on resolving dissimilarities dueto mismatch in data models, schema and query languages. Queries are executed against some targetdatabases, so that information from these databases is accessible to other applications. In orderto successfully support seamless integration of data from multiple sources, these systems must alsoprovide heterogeneous query optimization, so queries can be processed e�ciently. In this paper, wedescribe our research on extending a modular rule-based query optimizer [Florescu and Valduriez(1994)], to produce optimized queries in a heterogeneous environment.We de�ne heterogeneous query optimization for the purposes of this paper, as follows: Assume aglobal (object) schema in which a query is being posed in an object query language. For this paper,we use the Flora object model and Flora query language [Novak et al (1994)], developed at INRIA,as our global data model and query language. The queries are to be processed against some remotetarget databases, which could be represented by relational or object schemas. We assume there isknowledge of the mappings needed to import data from these remote databases. The objective ofheterogeneous query optimization is to start with an initial query, say a Flora query, and performpossible simpli�cations and equivalent transformations to �rst produce (multiple) query (queries)in the Flora query language, which refer(s) to the remote schema entities. We could subsequentlytransform these queries and generate a query in the remote query language, or generate multiplesub-queries, if the information spans more than one remote database. We note that although weassume a global schema architecture for HDBMS, in this paper, we can apply our results to de�nea heterogeneous search space for a di�erent architecture, e.g., federated HDBMS [Sheth and Larson(1990)], or canonical HDBMS [Qian and Raschid (1995)].The role of an optimizer is to determine an execution plan that minimizes an objective costfunction. The problem can be described abstractly as follows [Du92]: Given a query Q, an executionspace E that computes Q, and a cost function c de�ned over E, �nd an execution e in EQ (thesubset of E that computes Q) of minimum cost: [min e2EQ c (e)].An optimizer can be described along the following three dimensions: an execution space whichcaptures the underlying execution model and de�nes, in an abstract way, the alternative executions;a cost model which predicts the cost of an execution; and a search strategy which is used to enumeratethe executions and select the best one. The input query is often in an algebraic form, and executionplans are represented by algebraic operator trees. The execution space for a given query is obtainedby rewriting algebraic expressions using equivalence rules. In this paper, we focus on the �rst taskof de�ning the heterogeneous search space, in terms of an algebraic representation.There have been several proposals for transforming queries in heterogeneous environments.Some of them are based on higher-order query languages, higher-order logics, or meta-models[Barsalou and Gangopadhyay (1992), Krishnamurthy et al (1991), Lakshmanan (1993)], and are notwell supported under current DBMS technology. There have been a few systems that have studiedquery processing and/or have been implemented, e.g., Multibase [Dayal and Hwang (1984)], Pegasus[Ahmed et al (1991), Albert et al (1993)], UniSQL/M [Kim et al (1993), Kim and Seo (1992)],2

www.manaraa.com

SIMS [Arens and Knoblock (1992), Arens et al (1993)]. Alternative approaches either specify acanonical mediator knowledge base which has mapping knowledge among di�erent schema [Changet al (1994), Qian (1993), Qian and Raschid (1995), Raschid et al (1993), Raschid and Chang(1994)], or advocate the federated approach, as summarized in [Sheth and Larson (1990)]. Therehas also been research on constructing a calibrating database, to develop cost-models which capturethe various parameters corresponding to HDBMS [Du et al (1992)]. This study assumes that the�rst step of resolving discrepancies among the schema has already been solved.The most popular approach is to build a single uni�ed global schema, to resolve all the schematicdiscrepancies and representational mismatch (due to di�erent data models), of the heterogeneousenvironment. Each of the remote schemas are integrated within the global schema, and each ofthe remote databases is assumed to be a model for the global schema. The mapping from eachremote schema to the global schema is often expressed in some high-level extended SQL-like datade�nition/manipulation language. For example, HOSQL in the case of Pegasus and SQL/M in thecase of UniSQL/M.There has been some research in query optimization and query decomposition in heterogeneousenvironments in the Pegasus, SIMS and UniSQL/M projects. For example, the Pegasus project[Ahmed et al (1991), Albert et al (1993)], studies both query reformulation as well as query opti-mization. During query processing, the HOSQL query is represented as an E-tree (of sub-queriesand operations), in some extended relational algebra. If there are multiple external sources forthe data (EDRM), then appropriate translations are performed. The query in the native querylanguage is represented in some canonical form, and then decomposed into parametric sub-queries,each evaluated in a separate EDRM. Some simpli�cation of the queries is also possible, e.g. elim-ination of the expensive outer-join operation. They also consider some cost-based and heuristicoptimization. However, these strategies are applied ad-hoc, and they do not de�ne a heterogeneoussearch space.The SIMS project [Arens and Knoblock (1992), Arens et al (1993)], also addresses the issue ofquery processing and optimization. However, they use the LOOM knowledge representation systemto build a global schema, and as their query language. All optimization is done within the LOOMreasoning module, and not in an algebraic representation. Thus, it is di�cult to determine if theysystematically search the space of equivalent queries. A declarative speci�cation of mappings amongmultidatabase systems is presented in [Chomicki and Litwin (1994)], but they do not address theissue of generating equivalent queries using this knowledge.To summarize, previous research does not systematically de�ne a search space for heterogeneousquery optimization. A systematic de�nition of this space is the only way to exploit e�ective queryoptimization techniques (together with a cost model and search strategy), for HDBMS. This willbecome more important, as HDBMS scale up to large numbers of remote databases.Our approach to heterogeneous query optimization is inuenced by the modular rule-basedFlora object query optimizer [Florescu and Valduriez (1994]. We de�ne a heterogeneous searchspace for generating equivalent queries, in which we uniformly apply transformations based onsyntactic simpli�cation, logical and semantic equivalences, and most importantly, we incorporate3

www.manaraa.com

heterogeneous equivalences among entities in multiple heterogeneous schema. We specify \hetero-geneous object equivalences" to map from the entities of a remote target schema to the uni�edglobal schema, using a second-order algebraic language [Florescu and Valduriez (1994), Guting(1993)]. The heterogeneous search space is then de�ned using heterogeneous object equivalences,and logical and semantic equivalences in both the global and target schema(s).Our approach to specifying heterogeneous equivalences is similar to the concept of virtual classes,proposed in [Abiteboul and Bonner (1991)]. A virtual class is populated by \copying" objectsalready existing in other classes, or by \creating" entirely new objects. When a class is populatedby already existing objects of another class, they o�er the possibility of both importing the class(de�nition), and hiding portions of it; this is similar to a view. However, they do not considerobjects in a virtual class referencing objects in some other class, possibly in a recursive fashion.This is an important extension that we have considered in our research.Through a suite of examples, we explore the heterogeneous search space for query optimiza-tion. We summarize the examples as follows: The optimizer obtains a simpli�ed query wrt theremote schema, through the uniform application of heterogeneous equivalences, together with syn-tactic simpli�cation (such as un-nesting), logical simpli�cation (based on algebraic properties ofbuilt-in operators in the algebra, e.g., membership test), and semantic equivalences (based on do-main knowledge speci�ed as integrity constraints). Even with redundancy of heterogeneous objectequivalences, the optimizer correctly produces a simpli�ed query. However, the optimizer can alsouse alternative heterogeneous and semantic equivalences to produce several candidate equivalentqueries, from which the optimal query must be chosen. When remote schema entities are locatedin multiple remote databases, the optimizer can produce equivalent queries, as well as sub-queries.This paper is organized as follows: In Section 2, we give an overview of the Flora object modeland Flora query language, and the modular rule-based query optimizer architecture. In Section 3,we de�ne \heterogeneous object equivalences", and give examples. We also de�ne the heterogeneoussearch space for the HDBMS. In section 4, we use a suite of example schemas and queries, toillustrate the simpli�cation process, and to describe alternate queries in the heterogeneous searchspace. Finally, in Section 5, we summarize our results, and discuss future research.2 The Flora query optimizerFlora is a simple algebraic language [Novak et al (1994)], for an object data model, with collection-oriented computational capabilities. The Flora query optimizer uniformly captures logical, seman-tic, and implementation knowledge (physical information, statistics, etc.), within the framework ofa many-sorted algebra, and uses this knowledge to �nd an e�cient execution plan, from among a setof alternative plans. The optimizer is modular and rule-based, and strives to balance extensibilitywith e�ciency. 4

www.manaraa.com

2.1 The Flora AlgebraThe framework is based on a many-sorted algebra, which, unlike the relational algebra, supportsarbitrary types, and operations between arbitrary types. A formal description of the algebraicrepresentation is in [Florescu and Valduriez (1994), Guting (1993)].Flora type expressions are constructed from the basic types (atomic built-in types, externaltypes, and user-de�ned object types), through the recursive application of the following type con-structors: set, list and tuple.The set of corresponding Flora operators include built-in and user-de�ned operators. Thebuilt-in operators include comparisons, logic and arithmetic operators, aggregation operators, theset membership operator, etc. A de�nition of built-in Flora types and operators is in appendix A.The part of the algebra speci�c to an application domain is described by an object signature(O;PO;�; I), where O is a set of object type names, PO is a set of user-de�ned operators (withtheir signatures), � is a partial order on O (corresponding to the inheritance relationship), and I isa function that associates every object o 2 O with a Flora type expression, (corresponding to thestate of the object type o).Example 2.1Consider the following object signature: O=fPerson, City, Countryg,PO=fg, � =fg andI(Country)=[name: string, cities: fCityg, capital: City]I(City)=[name: string, residents: fPersong, country: Country]I(Person)=[name: string, country: Country, city: City, income: int, child: fPersong].NV is a set of particular named variables, each associated with a Flora type. For every object typeo 2 O, there exists an implicit named variable ext(o) of type fog corresponding to the extension ofthis object type. The value of the variable ext(o) is the set of object identi�ers of all the persistentinstances of type o, (including instances of all sub-types of type o).Example 2.2NV = f ext(Country) of type fCountryg, ext(City) of type fCityg, ext(Person) of type fPersong,RICH of type int g.A Flora term is an arbitrary combination of user-de�ned and built-in functions, starting withconstants and variables. X is a set of variables, each associated with a type, and T (X) is the set ofwell-typed terms. A formal de�nition of Flora well-typed expressions is in appendix B.The most important Flora built-in operator is Select. It provides a simple but expressive wayof constructing Flora queries, and it is a good candidate for optimization. Select generalizes theclassic select-project-join relational operators. It has three arguments, corresponding to the SQLclauses, SELECT, FROM and WHERE.De�nition 2.1 Select:Let C1 2 T (X) be of type fs1g, C2 2 T (XSfx1g) be of type fs2g, � � �, Cn 2 T (XSfx1; � � � ; xn�1g)5

www.manaraa.com

be of type fsng, pred2 T (X Sfx1; � � � ; xng) be of type bool, and proj2 T (XSfx1; � � � ; xng) be of types. Assume that fx1; � � � ; xng and X are disjoint. Then,Select(proj, x1 in C1 and x2 in C2 � � � xn in Cn, pred)is in T (X), and it is of type fsg (n�1).Queries can be expressed wrt any set-oriented expression, including the extensions of the classes.A range variable xi is associated with every collection Ci, xi is of type si and Ci is of type fsig.(See [Florescu and Valduriez (1994)] for details.) The expressions for each Ci, pred and proj areFlora terms, which satisfy the type constraints. Flora allows nesting and user-de�ned functions inall clauses of the Select, as illustrated in the following simple examples:Example 2.3Flora queriesa) Select the names of rich people who are childless.select(x.name, x in ext(Person),x.income>RICH and is_empty(x.child))b) Select the names of people who have at least one child residing in Paris.select(x.name, x in ext(Person),exists y in x.child (y.city=Paris));Object query languages may support the creation of new objects [see Bancilhon et al (1989)].For our research, this feature is crucial, since new objects are created in the heterogeneous envi-ronment, when a query is executed in a remote database.De�nition 2.2 Object construction:Let o 2 O be an object type name and t 2 T (X) be of type I(o). Then, NewObject o(t) 2 T (X),and it is of type o.Example 2.4Let i1, i2, i3 and i4 be object identi�ers corresponding to an instance of type Country, an instanceof type City, and two instances of type Person, respectively. Then,NewObject Person ([name:="Paul", country:=i1, city:=i2, income:=20000, child:={i3; i4}])creates a new object Paul of type Person. 6

www.manaraa.com

2.2 The search space for a Flora queryWe de�ne a query plan to be a term of an object signature, over the set of named variables. Thetask of an optimizer is to �nd an e�cient query plan, equivalent to an input query plan. We saythat two terms t1 and t2 of an object signature are equivalent, (noted as t1 � t2), if they evaluate tothe same value, for each instantiation of the named variables. Given an input term, t, over namedvariables NV , representing an input query plan, we de�ne Equiv(t) = ft0 j t0 2 T (NV) and t0 � tg,to be the search space for the Flora query t, that is being explored by the optimizer.De�ning the equivalence of terms is an important task. For the relational algebra, the equiv-alence of terms is based on the well-known algebraic properties of the relational operators. Thereare also well-known logical equivalences for built-in operators. However, the application dependentobject signature introduces new types and operators, into the object algebra, for each application.The object query optimizer must be capable of incorporating this application speci�c knowledge.Thus, semantic information, or knowledge about the object signature, for an application, is ex-pressed declaratively, as integrity constraints. They are speci�ed as object equivalences, and de�nethe correct transformations between equivalent algebraic terms with variables. Object equivalencesare de�ned as follows:De�nition 2.3 Assume an object signature (O;PO;�; I) and a set of named variables NV .� Let X be a set of variables which are disjoint from NV. Let E1, E2 2 T(NV [X) be two welltyped terms using variables XSNV having the same type. Then, the triple (X, E1, E2) isan object equivalence. If X=fx1; � � � ; x1g and xi has the type si for i=1,� � �,n, then the objectequivalence is the following �rst order formula:8x1 of type s1; � � � ; 8xn of type sn (E1 � E2).� The equivalence (X, E1, E2) is valid in the algebra, if, for all instantiation � for variablesNV [X, the result of the evaluation of term E1 is identical to the result of the evaluation ofterm E2.Example 2.5The following are example integrity constraints that are speci�ed as object equivalences, for theobject schema in example 2.1:a) There is a 1-to-many inverse association between instances of Country and City, via residentsand city, as follows:8 x in ext(Country) 8 y in ext(City) IsIn(x.cities, y) � x.country = yb) The capital of a country must also be a city of this country.8 x in ext(Country) IsIn(x.cities, x.capital) � TRUEAn optimizer uses object equivalences as rewriting rules, to generate equivalent plans.1:1A type-based pattern-matching algorithm, used by the optimizer, is described in [Florescu and Valduriez (1994)]7

www.manaraa.com

De�nition 2.4 Given a valid object equivalence r=(X, E1, E2), and a query t 2 T (NV), thent � t0, where t0 2 T (NV), if there is a subexpression t00 of t, and a substitution � for the variablesX, such that t00=E1� and t0 is obtained by replacing t00 in t by E2�; t0 is an equivalent query for t.2.3 The Flora optimizer architectureThe Flora optimizer architecture is described in detail in [Florescu and Valduriez, (1994)]. Acritical design decision was to use (declarative) semantic information together with hard-codedtransformations in a uniform manner, in generating the search space. This is supported by themodular nature of the optimizer architecture, which strikes a balance between extensibility (allowingthe addition of new transformation rules), and e�ciency (by hard-coding some transformationrules).Knowledge that is described declaratively include the algebraic properties of built-in operatorsand user-de�ned operators, (e.g., commutativity of the union), integrity constraints for each ob-ject schema (e.g., inverse links), and the correspondence between logical operators and physicaloperators that implement them. (We do not discuss this last category in the context of HDBMS.)The Flora optimizer is composed of modules, within a hierarchy. Each module has a speci�c goaland a strategy, which could include invoking another module. For each query plan that is input,a module produces one or several equivalent query plans. Major modules are query simpli�cation(which include some hard-coded transformations such as un-nesting, quanti�er elimination, etc.),and logical transformation (using logical equivalences and semantic equivalences). Other optimizermodules such as operator ordering are not discussed in the context of the HDBMS.3 Heterogeneous object equivalences and the search spaceJust as object equivalences were used to incorporate application speci�c domain knowledge, we useheterogeneous object equivalences to specify mapping knowledge between entities in the global objectschema, and remote entities in the target schema, (which may be relational or object schema). Theseheterogeneous equivalences are to be utilized during optimization. Normally, we do not attempt toshare actual object identi�ers across databases in a HDBMS, and any links between entities mustnecessarily be value-based. The heterogeneous equivalences express the link between an objectinstance that is created in the global schema, and the \values" corresponding to this object, whichare imported from the target databases. We �rst present an example of a simple heterogeneousobject equivalence. Then, we present a formal de�nition.Example 3.1Global object schema Remote relational schemaClass globalPerson remPerson(Pname, Page, Pssn){ name: string, age: integer, ssn: string}8

www.manaraa.com

In this example, there is a class globalPerson in the global schema, and a correspondingrelation remPerson in the target relational schema. We express a heterogeneous equivalence in astraightforward manner, to reect that a tuple of the relation remPerson corresponds to an instanceof the class globalPerson. The equivalence is as follows:ext(globalPerson) � Select(NewObject([name := x.Pname,age := x.Page,ssn := x.Pssn], x in remPerson))We now de�ne the heterogeneous object equivalence formally. We use a heterogeneous object signa-ture to describe the HDBMS environment, consisting of the global schema and all remote schema(s).De�nition 3.1 Given a global object signature (Og, POg , �g; Ig), and a set of n remote objectsignatures, (corresponding to n remote schema(s), (Ori ;POri ;�ri ; I ri), i = 1; n, then, a heteroge-neous object signature is (Oh, POh, �h, I h), whereOh = Og S (Si=1;n Ori), POh = POg S (Si=1;n POri), �h = �g S (Si=1;n�ri), andfunction Ih(o) for an object of type o = (Ig(o) if o 2 OgIri (o) if o 2 OriWe assume that the object type names, and the user-de�ned operator names,2 in the globalschema and the remote schema(s) are disjoint.De�nition 3.2 Suppose NV g, NV ri , i = 1; n, are the set of named variables, of the global schema,and the remote schema(s), respectively. Then, the set of named variables in the heterogeneousschema is NV h = NV g S (Si=1;n NV ri).In the case of a target relational schema, the corresponding object signature is (;; ;; ;; ;) andthe named variables are the set of relation names.We can now de�ne a heterogeneous object equivalence, as follows:De�nition 3.3 (Heterogeneous object equivalence)Suppose o is an object type name in the global schema, C1; C2; � � � ; Cn 2 NV h are named collectionsin the HDBMS (i.e., global and remote schema(s)), pred2 T (fx1; � � � ; xng) and it is of type bool,and proj2 T (fx1; � � � ; xng) and it is of type Ig(o). Thenext(o) � Select(NewObject(proj), x1 in C1 and x2 in C2 and � � � and xn in Cn, pred)is a heterogeneous object equivalence.This de�nition speci�es the extent of a class o, in the global schema, (similar to a view). Objectsof the class o are created after importing data from the remote database(s). Each query on theobject type o, in the global schema, referred to as ext(o), will obtain instance(s) of some data2In this paper, we do not consider any user-de�ned operators in the remote schema.9

www.manaraa.com

values, as speci�ed in the Select(NewObject(� � �), � � �) de�nition. The query will create a newobject for each appropriate (combination of) value(s). In this paper, we assume that there is someknowledge of a \key", with an implicit uniqueness constraint, which is used to correctly specifyheterogeneous equivalences.Next, we de�ne the heterogeneous search space for the HDBMS environment. We build on aprevious de�nition of the search space Equiv(t), expressed wrt a single object schema. We de�neSearchSpace(t), for the HDBMS, for input query t in the global object schema, as follows:De�nition 3.4 Let t be a term of an object signature of the global object schema, t 2 T (NV g).The heterogeneous search space for t is the set of equivalent queries, t0, such that they are expressedonly with named variables corresponding to the remote schema(s).SearchSpace(t) = ft0 2 T (Si=1;n NV ri) j t � t0g 8 t 2 T (NV g)We now address three important issues that a�ect heterogeneous equivalences in a HDBMS.Object Reference: Consider an attribute of an object whose value refers to another object, ineither the global schema, or in some remote DBMS. It could also be an imaginary object that iscreated. Such a situation is not considered in [Abiteboul and Bonner (1991)]. One possibility is tocreate a new object, for each reference to this object. However, if there were multiple referencesto this object, then this solution could lead to multiple objects (identi�ers) corresponding to anidentical set of values. This is a problem, since it is only on the basis of the \values" that we are ableto identify equivalences in the HDBMS, and create new (imaginary) objects in the heterogeneousenvironment. The solution is to avoid the creation of new objects, in this context.Recursive Classes: There is a related problem when we consider classes that are recursivelyde�ned. Suppose there is a class globalPerson in the global schema, and two relations in the remoteschema, remPerson and remMarried, from which globalPerson instances are to be populated.Note that spouse refers to an instance of globalPerson, hence the recursive reference in theheterogeneous object equivalence, as follows:Example 3.2Global object schema Remote relational schemaClass globalPerson remPerson(Pname, Page){ name: string remMarried(Pname1, Pname2)age: integerspouse: globalPerson }We de�ne the heterogeneous object equivalence recursively, as follows:ext (globalPerson) �Select(NewObject([name := x.Pnameage := x.Page 10

www.manaraa.com

spouse := Select y,y in ext(globalPerson) & z in remMarried& ((y.name = z.Pname1 & x.name = z.Pname2)or (y.name = z.Pname2 & x.name = z.Pname1))]x in remPerson)However, these recursive references may give rise to another problem. Consider a query inthe global schema which attempts to access objects (identi�ers) from the remote schema, ratherthan some \descriptive value" associated with the objects. If there is a recursive heterogeneousequivalence de�ned for this object, then the query transformation algorithm will recursively applythe heterogeneous equivalences, and will not terminate. Consequently, we can only deal with queriesthat access \values" from remote databases, in HDBMS. Since we do not share object identi�ersacross databases in HDBMS, this solution will su�ce for our purposes. However, this is a problemthat merits further research [Raschid et al (1995)].Referencing Existing Objects: So far we have expressed the heterogeneous equivalences in astraightforward manner, creating new objects for each combination of values obtained from someremote database(s), when a query is executed. This solution would be unsatisfactory if these objectsare to be made persistent in the global environment, i.e., we would no longer be able to keep oncreating new objects. A further drawback is that we are not able to identify already existingobjects, for which there are existing object identi�ers, in the global environment, but whose datavalues may only be available in some remote database(s). Some solutions were briey discussed in[Abiteboul and Bonner (1991)], and these problems also merit further study.4 Examples of queries in the heterogeneous search spaceWe describe the control strategy of the optimizer briey, to generate equivalent queries in the het-erogeneous search space. A Flora query, posed wrt the global schema entities, is �rst syntacticallysimpli�ed. Next, any applicable logical transformations wrt global schema entities are applied.This includes both logical equivalences wrt built-in operators and semantic equivalences based onintegrity constraints in the global schema. We then apply relevant heterogeneous equivalences,so that references to global schema entities are replaced with references to entities in the remoteschema(s). Further, we apply any applicable logical transformations (based on semantic equiva-lences wrt the remote schema entities). In this paper, we do not consider logical equivalences forbuilt-in operators in the remote schema(s). Since the application of the heterogeneous equivalencesmay introduce new references to entities in the global schema, we continue until all such refer-ences have been replaced. The process may produce one or more equivalent plans, wrt the remoteschema(s). We also do not consider the control strategy for operator ordering, or for selecting aparticular physical implementation for an operator, etc.In this section we use a suite of examples to illustrate the process of simplifying queries andobtaining equivalent queries in the heterogeneous search space. We summarize the examples asfollows: The optimizer obtains a simpli�ed query wrt the remote schema through the uniform11

www.manaraa.com

application of heterogeneous object equivalences, syntactic simpli�cation, logical simpli�cation, andsemantic equivalences. Even with redundancy of heterogeneous object equivalences, the optimizercorrectly produces a simpli�ed query. However, the optimizer can also use alternative heterogeneousand semantic equivalences to produce several candidate equivalent queries, from which the optimalquery must be chosen. When remote schema entities are located in multiple remote databases, theoptimizer can produce equivalent queries, as well as sub-queries. If these equivalent queries refer toentities in multiple remote databases, then we decompose the queries. We use some simple syntacticanalysis of the queries, and information on where the remote entities are located, to obtain simplersub-queries, for each of the remote databases.4.1 An example applying logical and heterogeneous equivalencesThis example demonstrates the application of logical and heterogeneous equivalences, to producea simpli�ed equivalent query. Logical equivalences typically express some possible simpli�cationswrt a built-in operator. In this example, we consider both the cardinality operator card, and themembership operator IsIn, both of which are de�ned for sets.In the example global schema, the class Student has an attribute courses referring to a setof Course instances, which are also in the global schema. This object reference is reected in theheterogeneous equivalence rule H1, de�ning Student, which refers to RemStudent and RemEnrolledin the remote schema, as well as to instances of Course in the global schema. There is a rule H2,the heterogeneous equivalence corresponding to the class Course in the global schema. The schemaand heterogeneous equivalences are as follows:Example 4.1Global schema Remote schemaClass Student Relation RemEnrolled(name1, course1){ sname: stringcourses: set(Course) } Relation RemStudent(name1)Class Course{ cname: string Relation RemCourse(course1, time1)time: float }The heterogeneous equivalences are as follows:[H1] ext(Student) �Select(NewObject([sname: x.name1,courses:=Select(y,y in ext(Course) & z in RemEnrolled &z.name1 = x.name1 & z.course1 = y.cname)],x in RemStudent)12

www.manaraa.com

� Select(NewObject([sname:=� � �,courses:=Select(y, y in ext(Course) & z in RemEnrolled& PRED(x,y,z)], x in RemStudent)where PRED(x,y,z) is the predicate (z.name1=x.name1 & z.course1=y.cname)[H2] ext(Course) � Select(NewObject([cname:=t.course1, time:=t.time1]), t in Course1)We next consider a logical equivalence rule corresponding to the Flora built-in cardinality operator,de�ned on sets, for example, card(X), where X is of type set(Course). Recall that all references toa remote schema must be value-based. The following equivalence rule allows us to perform a simpli-�cation so that the cardinality operator is evaluated over a set of course names, for set(Course),and eventually over the values of course1 from the remote database. For simplicity, we presentthe particular form of the logical equivalence rule, as directly applicable to this query, as follows:[L1] 8 X: set(Course) card(X) � card(Select(x.cname, x in X)Consider a query to select the names of all students enrolled in exactly two courses. The corre-sponding Flora query is as follows:Select(t.sname, t in ext(Student), card(t.courses) = 2)We follow this query through the following steps, applying the equivalences H1, L1 and then H2in turn, as follows:[Applying H1 for ext(Student)]Select(t.sname, t in Select(NewObject([sname:=x.name1,courses:=Select (y, y in ext(Courses),z in RemEnrolled & PRED(x,y,z))],x in RemStudent),& card(t.courses) = 2)[Simplifying for t.sname and applying L1 to card(t.courses)]Select(((NewObject([sname:=x.name1, courses:= ...])).sname, x in RemStudent,& card(Select(c.cname, c in t.courses))=2)& t in Select(Newobject([sname:=x.name1,courses:=Select (y, y in ext(Courses),z in RemEnrolled & PRED(x,y,z))])))[Simplifying for t.courses]Select(x.name1, x in RemStudent,& card(Select(c.cname, c inSelect(NewObject[courses:=Select (y, y in ext(Courses),z in RemEnrolled & PRED(x,y,z)])).courses))=2)13

www.manaraa.com

[Simplifying card(.....)]Select(x.name1, x in RemStudent,& card(y.cname, y in ext(Course) & z in RemEnrolled, & Pred(x,y,z)))=2)[Applying H2 to ext(Courses)]Select(x.name1, x in RemStudent,& card(y.cname, y in Select(NewObject(cname:=t.course1, time:=t.time1),t in RemCourse)& z in RemEnrolled, & Pred(x,y,z)) = 2)}[Further simplifying]Select(x.name1, x in RemStudent,& card(Select(t.course1, t in RemCourse & z in RemEnrolled &z.name1=x.name1 & z.course1=t.course1) == 2)The �nal simpli�ed query only retrieves relevant information from the remote database. It alsoevaluates the cardinality operator over the values of course1.Next, we consider a query that uses the expensive membership operator IsIn. We use a corre-sponding logical equivalence to eliminate this operation. The following query selects the names ofall students enrolled in \cs101":Select(x.name, x in ext(Student), IsIn(Select(y.cname, y in x.courses), ``cs101'')We �rst simplify the query as follows:Select(x.name, x in ext(Student), y in ext(Course) &IsIn(x.courses, y) & y.cname = ``cs101''We then apply equivalence H1 to ext(Student) and simplify further, (for x.name) to obtain thefollowing:Select(t.name1, t in RemStudent, y in ext(Course), &IsIn(Select(z, z in ext(Course) & z' in RemEnrolled & PRED(t,z,z')), y)& y.cname = ``cs101''where PRED(t,z,z') � (z'.name1=t.name1 & z'.course1=z.cname)We next apply the logical equivalence L2 wrt the operator IsIn. This equivalence eliminates themembership test. For simplicity, we give the speci�c form of this equivalence, such that it can bedirectly applied to this query, to clearly illustrate the transformation for this query. The logicalequivalence rule for the IsIn operator would actually be more general.[L2] IsIn(Select(z, z in ext(Course) & z' in RemEnrolled & PRED(t,z,z')), y)� y = z & z in ext(Course) & z' in RemEnrolled & PRED(t,z,z')14

www.manaraa.com

After applying this equivalence, and simplifying to eliminate z (replacing with y) we obtain thefollowing query, in which the expensive membership test IsIn has been eliminated:Select(t.name1, t in RemStudent, y in ext(Course), &z' in RemEnrolled & PRED(t,y,z') & y.cname = ``cs101''We then apply the equivalence H2 for ext(Course), and simplify further, to obtain the followingquery, which only performs join operations (and not a membership test):Select(t.name1, t in RemStudent, & a in RemCourse & z' in RemEnrolled,& z'.name1 = t.name1 & z'.course1 = a.course1 & a.course1 = ``cs101''4.2 An example applying semantic equivalencesThis example demonstrates the application of semantic, logical and heterogeneous object equiva-lences, to produce a simpli�ed equivalent query. Typically, semantic equivalences correspond tointegrity constraints and in this example, we consider semantic equivalences in the global schema.Later, we discuss the issue of validating these equivalences in the remote databases. We con-sider a fairly complex query which is expressed using several membership tests, all of which areeliminated. We also demonstrate that simpli�cation is possible, even with redundancy of the het-erogeneous equivalences. In the global schema, both classes Passenger and Flight have attributesdeparts and passengers, respectively, which refer to each other. They are as follows:Example 4.2Global schema Remote schemaClass Passenger Relation RemPassenger(Pno1, Pname1, Pcity1){ name: stringdeparts: set(Flight) Relation RemPassFlight(Pno1, Fno1)city: stringPno: integer } Relation RemFlight(Fno1, Ftime1)Class Flight{ Fno: integerpassengers: set(Passenger)time: float }Consequently, the equivalence H1 for ext(Passenger) refers to instances of Flight in the globalschema, and to tuples in RemPassenger, RemPassFlight, etc., in the remote schema. The equiva-lence H2 for ext(Flight is similar. They are as follows:[H1] ext (Passenger) �Select(NewObject([name:=x.Pname1,departs:= Select(y, y in ext(Flight), z in RemPassFlight,15

www.manaraa.com

& z.Pno1 = x.Pno1 & z.Fno1 = y.Fno),city:=x.Pcity1, Pno:= x.Pno1])x in RemPassenger)� Select(NewObject([name:=x.Pname1,departs:= Select(y, y in ext(Flight), z in RemPassFlight,& PRED(x,y,z),city:=x.Pcity1, Pno:= x.Pno1])x in RemPassenger)where PRED(x,y,z) � z.Pno1 = x.Pno1 & z.Fno1 = y.Fno[H2] ext (Flight) �Select(NewObject([Fno:=t.Fno1, time:=t.Ftime1,passengers:= Select(w, w in ext(Passenger),p in RemPassFlight,& p.Pno1 = w.Pno & p.Fno1 = t.Fno1)]t in RemFlight)� Select(NewObject([Fno:=t.Fno1, time:=t.Ftime1,passengers:= Select(w, w in ext(Passenger), p in RemPassFlight,& PRED(p,w,t)], t in RemFlight)where PRED(p,w,t) � p.Pno1 = w.Pno & p.Fno1 = t.Fno1Finally, we have the following semantic equivalence S1, in the global schema, expressing an integrityconstraint between instances of Flight and Passenger, through attributes passengers and departs:[S1] 8 p in ext(Passenger) 8 f in ext(Flight) IsIn(f.passengers, p)� IsIn(p.departs, f)The heterogeneous equivalences, combined with the semantic equivalence, provide multiple waysto obtain alternative queries, which are redundant. However, in many instances, there is only onecorrect simpli�ed query and we demonstrate that the optimizer obtains this query. The followingquery selects the names of passengers, and co-passengers, from Paris on a ight that departs at 11:Select([a.name, [c.name]], a in ext(Passenger), b in a.departs, c in b.passengers,& b.time = ``11h'' & a.city = ``Paris''We �rst apply the semantic equivalence S1, and we obtain 3 equivalent queries, as follows:1. Select([a.name, [c.name]], b in ext(Flight), a in b.passengers, c in b.passengers,& b.time = ``11h'' & a.city = ``Paris''16

www.manaraa.com

2. Select([a.name, [c.name]], a in ext(Passenger), b in ext(Flight),c in ext(Passenger),& b.time = ``11h'' & a.city = ``Paris''& IsIn(a.departs, b) &IsIn(d.passengers, c)3. Select([a.name, [c.name]], a in ext(Passenger), c in ext(Passenger),& b in Intersection(a.departs, c.departs))& b.time = ``11h'' & a.city = ``Paris''We choose to expand the �rst of these queries. However, we can demonstrate that all three querieswill reduce to an identical query wrt the remote schema.Select([a.name, [c.name]], a in ext(Passenger), b in a.departs, c in b.passengers,& b.time = ``11h'' & a.city = ``Paris''We �rst apply heterogeneous equivalence H1 to simplify the following query fragment:a.name f a in ext(Passenger) g �Select(NewObject([name:=x.Pname1departs:= Select(y, y in ext(Flight), z in RemPassFlight,& PRED(x,y,z)),city:=x.Pcity1,Pno:= x.Pno1]) x in RemPassenger).name� x.Pname1 fx in RemPassengergWe similarly simplify fragments (c.name fc in ext(Passenger)g) , and fb in ext(Flight) g. The query fragment containing the IsInmembership operator can also be simpli�ed. We �rst ap-ply equivalence H1 for fa in ext(Passenger)g and H2 for fb in ext(Flight)g , and simplify,to obtain the following fragment (details are not shown here):IsIn(a.departs, b) f a in ext(Passenger), b in ext(Flight)g �IsIn(Select(y, y in ext(Flight) & z in RemPassFlight, & x in RemPassenger& PRED(x,y,z),NewObject([Fno:=t.Fno1,time:=t.Ftime1,passengers:= Select(w, w in ext(Passenger),p in RemPassFlight, &PRED(p,w,t]t in RemFlight))We can now apply a speci�c form of the logical equivalence, similar to L2 which simpli�es the IsInoperator. It was also used in the previous example. This equivalence allows us to substitute thesecond argument NewObject, for y in the �rst argument, for the IsIn operator. We omit the detailshere. After applying this equivalence, we simplify further, for those variables that occur in the17

www.manaraa.com

arguments of PRED. This step eliminates the expensive membership operation, and produces thefollowing equivalent query fragment:� fp in RemPassFlight, x in RemPassenger, t in RemFlight & PRED(x,t,p)gWe apply a similar simpli�cation for the following fragment, to eliminate the membership test:IsIn(b.passengers, c) f b in ext(Flight), c in ext(Passenger) gWe are also able to obtain the following simpli�cations for other fragments:b.time f b in ext(Flight) g � t.Ftime f t in RemFlight ga.city f a in ext(Passenger) g � x.Pcity1 f x in RemPassenger gFinally, we obtain the following simpli�ed query, in which a, b and c are substituted by x, x'and t, resp. Note that in the �nal query, we have completely eliminated the membership test. Alsonote that we obtain an identical query if we start with the other two equivalent queries as well.The �nal query is as follows: where there are no membership tests.Select(([x.name, [x'.name]], x in RemPassenger, x' in RemPassenger, t in RemFlight,p in RemPassFlight, w in RemPassFlight& t.time = ``11h'' & x.city = ``Paris''& PRED(x,t,p) & PRED(w,x',t)where PRED(x,t,p) � P.Pno1 = x.Pno1 & z.Fno1 = t.Fno1and PRED(w,x',t) � w.Pno1 = x'.Pno1 & w.Fno1 = t.Fno1.4.3 Obtaining multiple equivalent queriesIn this example, we apply semantic equivalences in the remote schema, and heterogeneous equiv-alences, to obtain multiple equivalent queries. The semantic equivalences correspond to implicitintegrity constraints based on the uniqueness of a \key". The costs of each alternate query mustbe determined before choosing an optimal query. We also demonstrate that explicit joins may bereplaced by path expressions, (which may be more e�cient).For example, in the global schema, relationships among object instances are explicit. AttributesEno and Pno in the class EmpProj explicitly store the corresponding keys of Employee and Project,respectively. However, the remote schema in this example is an object schema, and there are objectreferences in the remote schema, e.g., manager1 of class RemProject refers to an instance of theclass RemEmployee. Using a semantic equivalence in the remote schema, based on the implicitintegrity constraint for keys, we are able to eliminate the joins in the simpli�ed query. The schemaare as follows:Example 4.3Global schema Remote schemaClass Project Class RemProject{ Pno: integer { Pno1: integerPmanager: integer } manager1: RemEmployeeworkers1: set(RemEmployee) }18

www.manaraa.com

Class Employee{ Eno: integer Class RemEmployeeEname: string { Eno1: integerEsal: float } salary1: floatworksin1: RemProjectClass EmpProj Ename1: string }{ Eno: integerPno: integer }The heterogeneous equivalences are as follows, with two equivalences H3 and H4 for ext(EmpProj):[H1] ext (Project) �Select(NewObject([Pno:=x.Pno1, Pmanager:=x.manager1.Eno1],x in ext(RemProject)))[H2] ext (Employee) �Select(NewObject([Eno:=y.Eno1, Ename:=y.Ename1, Esal:=y.salary1],y in ext(RemEmployee)))[H3] ext (EmpProj) � Select(NewObject([Eno:= z2.Eno1, Pno:= z1.Pno1],z1 in ext(RemProject), z2 in z1.workers1))� [H4] ext(EmpProj) � Select(NewObject([Eno := z.Eno1, Pno := z.worksin1.Pno1],z in ext(RemEmployee))) [H4 is equiv. to H3]We have the following semantics equivalences in the remote schema, wrt RemEmployee andRemProject, corresponding to an implicit integrity constraint, based on the uniqueness of the keys:[S1] 8 p1 in ext(RemProject) 8 p2 in ext(RemProject) (p1 = p2) � (p1.Pno1 = p2.Pno1)[S2] 8 e1 in ext(RemEmployee) 8 e2 in ext(RemEmployee) (e1 = e2)� (e1.Eno1 = e2.Eno1)Consider a query in the global schema to retrieve project managers whose salary is less thanthat of their employees, as follows:Select(x.Pmanager, x in ext(Project), y in ext(Employee), z in ext(EmpProj),t in ext(Employee)& x.Pno = z.Pno & y.Eno = z.Eno & x.Pmanager = t.Eno & t.Esal < y.Esal)�Select(x.Pmanager, x in ext(Project), y in ext(Employee), z in ext(EmpProj),t in ext(Employee) & PRED(x,y,z,t) & t.Esal < y.Esal)where PRED(x,y,z,t) � x.Pno = z.Pno & y.Eno = z.Eno & x.Pmanager = t.EnoNote the explicit join, represented by PRED(x, y, z, t), which is eventually eliminated byusing path expressions in the simpli�ed query, wrt the remote schema. We �rst apply heterogeneousequivalences H1, H2, and H4, and perform some simpli�cations to obtain the following:19

www.manaraa.com

Select(a.manager1.Eno1, a in ext(RemProject), b in ext(RemEmployee),c in ext(RemEmployee), d in ext(RemEmployee),a.Pno1=c.worksin.Pno1 & b.Eno1=c.Eno1 & a.manager1.Eno1=d.Eno1&d.salary1 < b.salary1)We then apply the equivalence S1 to the equality (a.Pno1 = c.worksin.Pno1), to obtain the sub-stitution fa j c.worksin g. Similarly, from (b.Eno1 = c.Eno1) and S2, we obtain the substitutionfb j c g. Finally, we obtain the following simpli�ed equivalent query, which has a single explicitjoin and several path expressions:Select(c.worksin.manager.Eno, c in ext(RemEmployee), d in ext(RemEmployee),& c.worksin1.manager1.Eno1 = d.Eno1 & d.salary1 < c.salary1)Alternately, we can utilize the equivalences H1, H2 and H3, perform some simpli�cations, andthen apply S1 and S2 to obtain the following query, in which all explicit joins have been replacedby path expressions:Select(c1.manager1.Eno1, c1 in ext(RemProject), c2 in c1.workers1& c1.manager1.salary1 < c2.salary1)The �rst query involves two variables that range over instances of the class RemEmployee and hasone explicit join. The second query has one variable that ranges over the remote schema instancesof RemProject and no explicit join. The cost for evaluating each of these queries would have to beestimated, before selecting the optimal query.4.4 Simplifying a nested query and query decompositionThis example demonstrates the un-nesting of a query, together with the application of heteroge-neous object equivalences, to obtain a query wrt the remote schema. The query may referenceinformation in multiple remote schema. Thus, after obtaining a simpli�ed query wrt the remoteschema, the optimizer will use some syntactic analysis of the join conditions in the query, togetherwith information about the co-location of relations in the remote databases, to obtain severalpossible (nested) sub-queries, one for each of the remote target databases.In the example remote schema, we assume that RemPeople and RemEarns are in one remotedatabase, and RemReside and RemCity are in another database. The schema are as follows:Example 4.4Global schema Remote schema #1Class Person Relation RemPeople(name1, age1){ name: string Relation RemEarns(name1, income1)age: integerincome: float } 20

www.manaraa.com

Remote schema #2Class City{ cname: string Relation RemCity(cname1)residents: Set(Person) } Relation RemReside(name1, city1)We have the following heterogeneous equivalence rules:H1 ext (City) �Select(NewObject([cname:= z1.cname1,residents:=Select(y, y in ext(Person), & z2 in RemReside& z2.name1 = y.name & z2.city1 = z1.city1)],z1 in RemCity))H2 ext (Person) �Select(NewObject([name:= z1.name1, age:=z1.age1, income:=z2.income1],z1 in RemPeople, z2 in RemEarns, & z1.name1 = z2.name1))The following nested query selects people who reside in the city Paris and have zero income:Select(x.name, x in Select(y, z in ext(City) & y in z.residents, &z.cname=``Paris''y.income = 0), x.age > 60)We �rst un-nest this to obtain the following query:Select(y.name, z in ext(City) & y in z.residents & z.cname = ``Paris''& y.income = 0) & y.age > 60)We then apply the equivalence H2 for ext(City) and simplify to eliminate irrelevant variables, andobtain the following:Select(y.name, z1 in RemCity& y in Select(p, p in ext(Person), & z2 in RemReside& z2.name1 = p.name & z2.city1 = z1.city1)& z1.cname1 = ``Paris'' & y.income = 0 & y.age > 60)We now apply the equivalence H1 for ext(Person) and simplify further, to obtain the followingun-nested query:Select(z3.name1, z1 in RemCity, z3 in RemPeople, z4 in RemEarns, z2 in RemReside& z3.name1 = z4.name1 & z2.name1 = z3.name1 & z2.city1 = z1.city1& z1.cname1 = ``Paris'' &z4.income1 = 0 & z4.age1 > 60)We stated earlier that relations RemEarns and RemPeople are co-located in remote database #1,and RemCity and RemResides are co-located in database #2. Based on a syntactic analysis of thejoin conditions of this query, we would obtain several possible (nested) sub-queries. We would needto evaluate the cost of each set of queries before determining an optimal plan. Some possibilitiesinclude (SQ1, SQ2) and (SQ3, SQ4, SQ5), as follows:21

www.manaraa.com

SQ1 Select(z3.name1, z4 in RemEarns, z3 in RemPeople& z4.income1 = 0 & z3.age1 > 60 & z3.name1 = z4.name1)SQ2 Select(z2.name1, z5 in SQ1 & z1 in RemCity & z2 in RemReside& z2.name1 = z5.name1 & z2.city1 = z1.cname1 & z1.cname1 = ``Paris'')SQ3 Select(z3.name1, z4 in RemEarns, z3 in RemPeople& z4.income = 0 & z3.age > 60 & z3.name1 = z4.name1)SQ4 Select(z2.name1, z1 in RemCity, z2 in RemReside& z2.city1 = z1.cname1 & z1.cname1 = ``Paris'')SQ5 Select(x.name1, x in SQ3, y in SQ4 & x.name1 = y.name1)5 Summary and future researchIn this paper, we de�ned the heterogeneous search space for a HDBMS, where the global schemaand query language are based on the Flora language and object model, and where the target re-mote databases may be either relational or object-oriented. We have extended a modular rule-basedquery optimizer which inputs a query in the global schema and obtains equivalent queries (or mul-tiple sub-queries) wrt the remote schema entities. The optimizer uniformly performs (1) syntacticsimpli�cation, (2) logical transformations based on logical equivalences wrt built-in operators inthe global schema, (3) logical transformation based on semantic equivalences based on integrityconstraints in either the global schema or the remote schema, and (4) heterogeneous simpli�cation,based on heterogeneous object equivalences, which map remote schema entities to entities in theglobal schema. The Flora optimizer has been implemented to handle syntactic simpli�cation, andlogical transformations based on logical and semantic equivalences. It is being extended to performheterogeneous equivalences as well.There are a number of issues that require further research. First, the semantic equivalences arebased on integrity constraints in the global schema or remote schema. The heterogeneous objectequivalences are also based on implicit integrity constraints, depending on the notion of a uniquekey. The task of validating these equivalences in the HDBMS is critical, if we are to correctlytransform queries wrt the remote databases. There are several possible strategies for validation.We may specify some queries, in the global schema, to validate integrity constraints, and transformthese queries and generate a set of queries wrt the remote schema. The queries can then be validatedagainst the target databases. A di�erent approach is to extend the solver (corresponding to thealgebraic language) to induce integrity constraints wrt each remote schema, for the constraints inthe global schema. We are considering both of these approaches, in future research.We have also not considered built-in operators in the schema of the target databases, andcorresponding logical equivalences. We have made the assumption that new objects are alwayscreated in the global environment, when a query executes and imports data values from the targetdatabases. However, we must consider alternative scenarios, where an object may already be22

www.manaraa.com

materialized, or where some portion of the object may be materialized. We must also develop acost model for the HDBMS. We also have to address the problem of determining a search strategy,to enumerate the execution plans so that the best one may be selected.Finally, in this paper, we assumed a global schema architecture for the HDBMS. We can extendour results to de�ne a heterogeneous search space for other architectures, e.g., a federated HDBMSor a canonical HDBMS architecture.6 BibliographyAbiteboul, S. and Bonner, A. (1991) \Object and views," Proc. of the SIGMOD International Conference, 238-247.Ahmed, R., de Smedt, P., Du, W., Kent, W., Ketabchi, M.A., Litwin, W.A., Ra�i, A. and Shan, M.-C. (1991) \ThePegasus heterogeneous multidatabase system," IEEE Computer, 24(12), 19{27.Albert, J., Ahmed, R., Ketabchi, M., Kent, W. and Shan, M.-C. (1993) \Automatic importation of relational schemasin Pegasus," Proc. of the Workshop on Research Issues in Data Engineering, ICDE-93.Arens, Y. and Knoblock, C.A. (1992) \Planning and reformulating queries for semantically-modeled multidatabasesystems," Proceedings of the First International Conference on Knowledge Management.Arens, Y., Chee, C.Y., Hsu, C.-N., Knoblock, C.A. (1993) \Retrieving and integrating data from multiple informationsources," International Journal of Intelligent and Cooperative Information Systems. Vol. 2, No. 2., 127-158.Bancilhon, F., Cluet, S. and Delobel, C. (1989) \Query languages for object-oriented database systems," Proceedingsof the International Conference on Database Programming Languages.Barsalou, T. and D. Gangopadhay (1992) \M(DM): An open framework for interoperation of multimodel multi-database systems," Proceedings of the International Conference on Data Engineering.Batini, C., Lenzerini, M. and Navathe, S.B. (December 1986) \A comparative analysis of methodologies for databaseschema integration," ACM Computing Surveys, Vol. 18, No. 4, 323-364.Chang, Y., Raschid, L. and Dorr, B.J. (1994) \Transforming queries from a relational schema to an equivalent objectschema: a prototype based on F-logic," Proc. of the ISMIS-94 International Symposium.Chomicki, J. and Litwin, W. (1994) \Declarative de�nition of object-oriented multidatabase mappings," in DistributedObject Management, Oszu, M.T., Dayal, U. and Valduriez, P. (eds.) Morgan Kau�man Publishers.Dayal, U. and Hwang, H. (1984) \View de�nition and generalization for database integration in a multidatabasesystem," IEEE Transactions on Software Engineering, 10(6), 628-645.Du. W., Krishnamurthy, R. and Shan, M.-C. (1992) \Query optimization in heterogeneous DBMS," Proceedings ofthe International Conference on Very Large Data Bases.Florescu, D. and Valduriez, P. (1994) \Rule-based query processing in the IDEA system," Proc. of the Intl. Symp.on Advanced Database Technology and their Integration, Nara, Japan, October 1994.Guting, R.H. (1993) \Second-order signature: a tool for specifying data models, query processing and optimization,"Proceedings of the International Conference on the Management of Data.Kent, W. (1991) \Solving domain mismatch and schema mismatch problems with an object-oriented database pro-gramming language," Proceedings of the International Conference on Very Large Data Bases.Kifer, M., Kim, W. and Sagiv, Y. (1992) \Querying object-oriented databases," Proc. of the ACM Sigmod Conference.Kim, W., Choi, I., Gala, S. annd Scheevel, M. (1993) \On resolving schematic heterogeneity in multidatabase sys-tems," Distributed and Parallel Databases, 1(3), 251{279.Kim, W. and Seo, J. (December, 1991) \Classifying schematic and data heterogeneity in multidatabase systems,"IEEE Computer, pages 12{18.Krishnamurthy, R., Litwin, W. and Kent, W. (1991) \Language features for interoperability of databases withschematic discrepancies," Proceedings of the ACM Sigmod Conference.23

www.manaraa.com

Lakshmanan, L.V.S., Sadri, F. and Subramanian, I.N. (1993) \On the logical foundations of schema integration andevolution in heterogeneous database systems," Proc. of the DOOD Conf., 81-100.Novak,M., Gardarin, G. and Valduriez, P. (1994) \Flora: a functional-style language for object and relational algebra,", INRIA Tech. report.Qian, X. (1993) \Semantic interoperation via intelligent mediation," Proc. of Workshop on Res. Issues in DataEngg..Qian, X. and Raschid, L. (1995) \Query interoperation among object-oriented and relational databases," Proceedingsof the International Conference on Data Engineering.Raschid, L., Chang, Y. and B. Dorr (1994) \Query Transformation Techniques for Interoperable Query Processingin Cooperative Information Systems," Proceedings of the CoopIS International Conference.Raschid, L. and Chang, Y. (1994) \Interoperable query processing from object to relational schemas based on aparameterized canonical representation," Submitted to the IJICIS journal.Sheth, A. and Larson, J. (1990) \Federated database systems for managing distributed, heterogeneous, and au-tonomous databases," ACM Computing Surveys, 22(3), 183{236.Appendix A: Flora TypesDe�nition 1 (B;PB) is a built-in signature , where B is the set of Flora built-in types and PBis the set of Flora built-in operators, with signatures. Currently the Flora built-in types B=f int,bool, oat, stringg. At present, PB contains the following operators:+, -, *, / : oat�oat!oat and, or : bool�bool!boolnot : bool!bool <, �, >, � : oat�oat!boolcontains, like : string�string!bool =: s � s!bool for all type sunion, di�erence, intersection : fsg � fsg ! fsg for all type scard : fsg !oat for all type s IsIn : fsg � s!bool for all type sIsEmpty : fsg!bool for all type s max, min, avg : foatg!oat.De�nition 2 The algebra speci�c to an application domain is described by an object signature(O;PO;�; I), where O is the set of object type names, PO is the set of user-de�ned operators(with their signatures), � is a partial order on O (corresponding to the inheritance relationship),and I is a function which associates a state with every object type name o 2 O.De�nition 3 The set SB;O of Flora type expressions is an in�nite set, recursively de�ned as follows:(i) if b 2 B then b 2 SB;O; (ii) if o 2 O then o 2 SB;O;(iii)(set type constructor) if s 2 SB;O then fsg 2 SB;O;(iv)(tuple type constructor) if s1; � � � ; sn 2 SB;O and f1; � � � ; fn are attribute names,then [f1 : s1; � � � ; fn : sn] 2 SB;O for every n�1.De�nition 4 NV is a particular set of variables, the named variables, representing the persistentroots of the databases. Each named variable xi is associated with a name and a type, type(xi) 2SB;O. For example, object type extensions represent particular named variables in an object schema.24

www.manaraa.com

Appendix B: Flora ExpressionsDe�nition 5 The set T(X) of well-typed terms, using variables X, is inductively constructed.(i) If c is a constant of type s, then c2 T(X) and it is of type s.(ii) If x2X is a variable of type s, then x2 T(X) and it is of type s.(iii)(Operator application:) If op is a built-in or user-de�ned operator, with signature op:s1 �� � � � sn ! s, where t1; � � � ; tn 2 T (X) are of type s1; � � � ; sn, resp., then op(t1; � � � ;tn)2 T(X), andit is of type s.(iv)(Tuple constructor:) If t1; � � � ; tn 2 T (X), and they are of type s1; � � � ; sn, resp., and f1; � � � ; fnare attribute names, then [f1 := t1; � � � ; fn := tn] 2 T (X), and it is of type [f1 : s1; � � � ; fn : sn](n�1).(v)(Attribute selector:) If t2 T (X) and it is of type [f1 : s1; � � � ; fn : sn], then t.fi 2 T (X), andit is of type si (1�i�n).(vi)(Set constructor:) If t1; � � � ;tn 2T(X), and they are of type s, then ft1; � � � ;tng 2T(X) and itis of type fsg (n�0).(vii)(Object dereferencor:) If t2 T (X) is of type o 2 O, then t:state 2 T (X) is of type I(o).(viii)(Object constructor:) If o 2 O is an object type name, and t2 T (X) is of type I(o), thennew o(t) 2 T (X) and it is of type o.(ix)(Forall, Exists operators:) If C2 T (X) is of type fsg, and pred2 T (XSfxg) is of type bool,then forall (x in C, pred) and exists(x in C, pred)2 T (X) are of type bool.(x)(Selection:) If C1 2 T (X) is of type fs1g, C2 2 T (X Sfx1g) is of type fs2g, � � �, Cn 2T (XSfx1; � � � ; xn�1g) is of type fsng, pred2 T (XSfx1; � � � ; xng) is of type bool, proj2 T (XSfx1; � � � ; xng)is of type s. Assume that fx1; � � � ; xng and X are disjoint. Then,select(proj, x1 in C1 and x2 in C2 and � � � and xn in Cn, pred) 2 T (X) and it is of type fsg (n�1).
25

